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1. Introduction 

Hybrid fixed point theory is a recent development is the ambit of fixed point theorems 
for contracting single-valued and multivalued maps in metric spaces. Indeed, the 
study of such maps was initiated during 1980-83 by Bhaskaran and Subrahmanyam 
[2], Hadzic [10], Kaneko [14], Kulshrestha [18], Kubiak [19], Naimpally et al. [25] 
and Singh and Kulshrestha [35]. For a history of the fundamental work on this line, 
refer to Singh and Mishra [37], and for more recent work on this line Beg and Azam 
[1], Jungck and Rhoades [12], Kamran [13], Kaneko [15], Kaneko and Sessa [16], Liu, 
Wu, and Li [20], Mishra, Singh and Talwar [22], Naidu [24], Pathak et al. [26], Popa 
[27], Rhoades et al. [28], Shahzad [30], and Singh et al.[31, 33, 34, 36-40]. Hybrid 
fixed point theory has potential applications in functional inclusions, optimization 
theory, fractal graphics and discrete dynamics for set-valued operators. 

The following fundamental coincidence theorem for a pair of multivalued and 
single-valued maps is essentially due to Singh and Kulshrestha [35] (see also [18] and 
[37]).  

Theorem 1.1 ([35]).   Let X be a metric space and (CL(X), H) the Hausdorff metric 
space induced by d, where CL(X) is the collection of all nonempty closed subsets of X.  
Let P : X → CL(X) and f : X → X be such that P(X) ⊆ f(X) and 

 H(Px, Py)  ≤  q.max{d(fx, fy), d(fx, Px), d(fy, Py), [d(fx, Py) + d(fy, Px)]/2}       (SK) 

for all x, y ∈ X, where 0 ≤ q < 1. If f(X) [or P(X)] is a complete subspace of X, then P 
and f  have a coincidence, i.e., there exists a point z ∈ X such that  fz ∈ Pz. 

We remark that under the conditions of Theorem 1.1, f and P need not have a 
common fixed point even if f and P are commuting (cf. Def. 2.3) and continuous as 
the following example shows (see also [25, 33, 37-40]). 

Example 1.1 ([25]). Let X = [0, ∞) be endowed with the usual metric, 

Px = [1 + x, ∞) and fx = 2x. Then P(X) ⊆ f(X) = X. Further    

 H(Px, Py)  ≤  qd(fx, fy),    x, y ∈ X,   1/2 ≤ q < 1.                                          (NSW) 

Thus P and f satisfy all the requirements of Theorems 1.1, since (NSW) implies (SK). 

Evidently, P and f have a coincidence point z (≥ 1), i.e., fz ∈ Pz for any z  ≥ 1. Notice 
that P and f have no common fixed points. Moreover,  P is not a multivalued 
contraction in the sense of  Nadler, Jr. [23], since H(Px, Py)  =  d(x, y),   x, y ∈ X. 
(Recall that Nadler’s multivalued contraction is (NSW) with f = the identity map on X, 
wherein 0 ≤ q < 1.)    
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Theorem 1.1 has been generalized and extended on various settings (see, for 
instance, [1, 20, 24, 27, 28, 34, 36-40]). In this paper, we obtain a few generalizations 
and extensions of Theorem 1.1 and other similar results (cf. [15] and [31]). Using 
these coincidence theorems, we obtain a few fixed point theorems, wherein continuity 
of maps is not needed, completeness of the space is relaxed to the completeness of a 
subspace, and the commutativity requirement is tight and minimal.    

       

2.  Preliminaries 
Consistent with [7] and [32], we use the following notations and definitions.  

Definition 2.1 ([7]). Let X be (nonempty) a set and s ≥ 1 a given real number. A 
function  
d : X × X → R+ (nonnegative real numbers) is called a  b-metric provided that, for all   
x, y, z  ∈ X,   

       d(x, y)  =  0  iff   x = y,                                                                 (bm-1) 

       d(x, y)  =  d(y, x),                                                                          (bm-2) 

       d(x, z)  ≤  s[d(x, y) + d(y, z)].                                                        (bm-3) 

The pair (X, d) is called a b-metric space. 

We remark that a metric space is evidently a b-metric space. However, Czerwik [6, 
7] has shown that a b-metric on X need not be a metric on X (see also [8, 9, 32]).   

Definition 2.2 ([7]).  Let (X, d) be a b-metric space. The Hausdorff b-metric H on 
CL(X), the collection of all nonempty closed subsets of (X, d) is defined as follows:                           

⎪
⎪
⎩

⎪⎪
⎨

⎧

∞
=

∈∈

.,

,max)},,(sup),,(supmax{

:),(
otherwise
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In all that follows Y is an arbitrary nonempty set and (X, d) a b-metric space 
unless otherwise specified. For the following definition in a metric space, one may 
refer to Itoh and Takahashi [11] and Singh and Mishra [39]. 

Definition 2.3.  Let Y be a nonempty set, f : Y → Y  and  P : Y → 2Y, the collection of 
all nonempty subsets of  Y. Then the hybrid pair (P, f) is (IT)-commuting at x ∈ Y if 
fPx ⊆ Pfx for each  x ∈ Y.         
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We cite the following lemmas from Czerwik [7-9] and Singh et al. [31, 32].  
Lemma 2.1.    For any A, B, C ∈ CL(X), 

  (i)        d(x, B)   ≤  d(x, y)  for any  y ∈ B, 

 (ii)      d(A, B)  ≤  H(A, B), 

 (iii)     d(x, B)  ≤   H(A, B),    x ∈ A 

 (iv)     H(A, C)  ≤  s[H(A, B) + H(B, C)],    

 (v)      d(x, A)  ≤  sd(x, y) + sd(y, A),    x, y ∈ X.  

Lemma 2.2.    Let A and B ∈ CL(X).  Then for any  x ∈ A and for some  0 < q,  k < 1,  
there  exists a  y ∈ B  such that    

                     d2(x, y)  ≤  q-k H2(A, B). 

For an excellent collection of such results in metric spaces, one may refer to Rus 
[29].  
Lemma 2.2 in a metric space is essentially due to Nadler, Jr. [23] (see also [3] and [5]). 

.                                                      

3.  Coincidence Theorems 
We begin with the following result. 

Lemma 3.1.     Let (X, d) be a b-metric space and {yn} a sequence in X such that  

d(yn+1, yn+2)  ≤  qd(yn, yn+1),      n = 0, 1,…, 

where 0 ≤ q < 1. Then the sequence {yn} is Cauchy sequence in X provided that sq < 1. 
Proof. For any n, 

                        d(yn+1, yn+2)  ≤  qd(yn, yn+1) 

                                     ≤  q2d(yn-1, yn) ≤ …≤  qn+1d(y0, y1). 

For  n < m, by the triangle inequality (cf. Def. 2.1 (bm-3)), 

d(yn, ym)  ≤  sd(yn, yn+1) + s2d(yn+1, yn+2) +  …+ sm-n-2[d(ym-2, ym-1) + d(ym-1, ym)]                           

                <  sqn(1 + sq + s2q2  + … )d(y0, y1) 

                =  [sqn/(1 – sq)]d(y0, y1)  → 0 as n → ∞, 

 and {yn} is Cauchy.         □ 



Shyam Lal Singh, Stefan Czerwik, Krzysztof Król, and Abha Singh 
 
 

405

  Following  Liu  et al. [21], Singh et al. [33, 35] and Tan et al. [41], we 
consider the following conditions for  f : Y → X  and   P, Q : Y → CL(X):  

H(Px, Qy)  ≤  q.max{d(fx, fy), d(fx, Px), d(fy, Qy), 

[d(fx, Qy) + d(fy, Px)]/2}, x, y ∈ X,                                    (1) 

where q ∈ (0, 1); and 

H2(Px, Py)  ≤  q.max m(x, y),  x, y ∈ X,                                   (2) 

where q ∈ (0, 1) and  

m(x, y): = max{d2(fx, fy), d(fx, fy).d(fx, Px), d(fx, fy).d(fy, Py),  

                          d(fx, fy).[d(fx, Py) + d(fy, Px)]/2,  

                          d(fx, Px).d(fy, Py), d(fx, Px).[d(fx, Py) + d(fy, Px)]/2,  

                          d(fy, Py).[d(fx, Py) + d(fy, Px)]/2, d(fx, Py).d(fy, Px)}. 

We remark that (1) with P = Q and Y = X, a metric space is (SK), while the main 
condition studied in [31] is based on the work of [21] and [41], and is a particular case 
of (2). 

Assume that β : = sq1-k[1 + √(1 + 8q-1+ks-1)]/4, where 0 < q,  k < 1.   

Theorem 3.1.   Let Y be an arbitrary nonempty set and (X, d)  a  b-metric space. Let   

P : Y→ CL(X)  and  f : Y→ X  be such that  P(Y) ⊆ f(Y)  and (2) holds for all  x, y 
∈ Y. If  sq1-k < 1, βs < 1 and one of P(Y) or f(Y)  is a complete subspace of X,  then  fx 
∈ Px  has a solution, that is  P  and  f  have a coincidence. Indeed, for any x0 ∈ Y, 
there exists a sequence {xn} in  Y  such that    

(I)   fxn+1 ∈  Pxn,   n = 0, 1, 2, …;   

(II)  the sequence {fxn} converges to  fz  for some  z ∈ Y,  and  fz ∈ Pz,  that is,  P  and  
f  have a coincidence at  z;  and                                                                                                                     

(III)   d(fxn, fz)  ≤  [sβn/(1 - sβ)]d(fx0, fx1).   

Proof.  Pick x0 ∈ Y.  Let k be a positive number such that k < 1.  Following 
Kulshrestha [18] and Singh and Kulshrestha [35], we construct sequences {xn} ⊆ Y 
and {fxn} ⊆ X in the following manner. Since P(Y) ⊆ f(Y), we may choose a point x1 

∈ Y such that fx1 ∈ Px0.  
If Px0 = Px1 then x1  =  z  is a coincidence point of   P  and   f,  and we are done. So 

assume that Px0 ≠ Px1.  
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Now the condition P(Y) ⊆ f(Y) and Lemma 2.2 allow us to choose a point x2 ∈ Y 
such that  fx2 ∈ Px1 and 

        d2(fx1, fx2 )  ≤  q-k H 2(Px0, Px1).  

If Px1 = Px2, then x2 becomes a coincidence point of P and f.  If not, continue the 
process. In general, if Pxn ≠ Pxn+1, we choose fxn+2 ∈ Pxn+1 such that  

            d2(fxn+1, fxn+2)  ≤  q-k H 2(Pxn, Pxn+1).  

Then by (2),  

 d2(fxn+1, fxn+2)  ≤  q-k H 2(Pxn, Pxn+1),  

 ≤ q1-k.max{d2(fxn, fxn+1), d(fxn, fxn+1).d(fxn, Pxn),                    
d(fxn, fxn+1).d(fxn+1, Pxn+1),                                    
d(fxn, fxn+1).[d(fxn, Pxn+1) + d(fxn+1, Pxn)]/2,         
d(fxn, Pxn).d(fxn+1, Pxn+1),                                      
d(fxn, Pxn).[d(fxn, Pxn+1) + d(fxn+1, Pxn)]/2,        
d(fxn+1, Pxn+1).[d(fxn, Pxn+1) + d(fxn+1, Pxn)]/2,      
d(fxn, Pxn+1).d(fxn+1, Pxn)}.  

For the sake of simplicity, we take yn : = fxn,  dn : = d(yn, yn+1) and λ : = q1-k .   

Then the above inequality, after simplification, yields 

d2
n+1  ≤  λ.max{d2

n,  dn dn+1,  dn [d(yn, yn+2)]/2,  dn+1[d(yn, yn+2)]/2)}, 

that is  

d2
n+1  ≤  λ.max{d2

n,  dn dn+1,  s(dn [dn + dn+1]/2),  s(dn+1[dn + dn+1]/2)}.                (3) 

 

We remark that in the construction of sequences {xn} and {fxn}, xn (for each n) is 
not a coincidence point of P and f. This together with   Pxn  ≠  Pxn+1 means that fxn  ≠  
fxn+1.  Indeed, if at any stage fxn = fxn+1 then fxn ∈ Pxn  and {xn} is a coincidence point 
of  P and f.  Therefore, according to our construction of the sequences, dn  ≠  0. Hence 
the inequality (3) implies one of the following: 

               d2
n+1  ≤   λd2

n 

that is                         

            dn+1  ≤  √λdn;  

     d2
n+1  ≤   λdn dn+1   implies dn+1  ≤  λdn; 
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    d2
n+1  ≤   λs(dn [dn + dn+1]/2)  being a quadratic inequality in 

dn+1  gives 

           dn+1  ≤   [λs/4 + √((λ2s2/16) + λs/2)]dn  

                                   =  {λs[1+ √(1+ 8(λs)-1)]/4}dn; 

     d2
n+1  ≤  λs(dn+1[dn + dn+1]/2)  implies  dn+1  ≤  [λs/(2 - λs) ]dn. 

These four outcomes together imply 

dn+1  ≤  max{√λ, λ, λs[1+ √(1+ 8(λs)-1)]/4, λs/(2 - λs)}dn  =  βdn, 
where β : = λs[1+ √(1+ 8(λs)-1)]/4.  Notice that 0 < β < 1 and βs < 1.  So, by Lemma 
3.1, {fxn} is a Cauchy sequence.  Now let f(Y) be a complete subspace of X.  Then the 
sequence {fxn} has a limit in f(Y). Call it u.  Hence, there exists a point z ∈ Y   such 
that   fz  =  u.  Since {fxn} converges to fz,   

d(fxn, Pxn)  ≤  d(fxn, fxn+1)  implies that d(fxn, Pxn) → 0  as n → ∞. 

By Lemma 2.1 (iii) and (2), 

d2(fxn+1, Pz)  ≤  q-k H 2(Pxn, Pz) 

                ≤  q1-k.max{d2(fxn, fz), d(fxn, fz).d(fxn, Pxn), d(fxn, fz).d(fz, Pz),  

                                    d(fxn, fz).[d(fxn, Pz) + d(fz, Pxn)]/2, d(fxn, Pxn).d(fz, Pz),                                   

                                  d(fxn, Pxn).[d(fxn, Pz) + d(fz, Pxn)]/2,  

        d(fz, Pz).[d(fxn, Pz) + d(fz, Pxn)]/2, d(fxn, Pz).d(fz, Pxn)}. 

Making n → ∞,  d(fz, Pz)  ≤  λd(fz, Pz).  

 

This yields fz ∈ Pz, since Pz is closed and  λ < 1. This argument applies to the 
case when P(Y)  is a complete subspace of  X,  since  P(Y)  ⊆ f(Y).   

This proves (I) and (II).   

For n < m, 

 d(fxn, fxm)  ≤  sd(fxn, fxn+1) + s2d(fxn+1, fxn+2) + … + sm-n-2[d(fxm-2, fxm-1) 

+ d(fxm-1, fxm)] 

                  <  sβn(1 + sβ + s2β2  +  …)d(fx0, fx1)   

                  =  [sβn/(1 - sβ)]d(fx0, fx1). 

This in the limit (m → ∞)  yields (III).       □ 
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Now we extend Theorem 3.1 to the setting of a pair of multivalued maps and a 
single-valued map on Y with values in a b-metric space X. 

Theorem 3.2.   Let P, Q : Y → CL(X) and f : Y → X   such that  P(Y) ∪ Q(Y)  ⊆ f(Y) 
and the following holds for all x, y ∈ Y: 

H 2(Px, Qy)  ≤  q.max{d2(fx, fy), d(fx, fy).d(fx, Px), d(fx, fy).d(fy, Qy),  

                             d(fx, fy).[d(fx, Qy) + d(fy, Px)]/2,  

                             d(fx, Px).d(fy, Qy), d(fx, Px).[d(fx, Qy) + d(fy, Px)]/2,  

                             d(fy, Qy).[d(fx, Qy) + d(fy, Px)]/2, d(fx, Qy).d(fy, Px)}, 

where 0 < q < 1. If one of  P(Y), Q(Y)  or  f(Y)  is a complete subspace of  X, then fx ∈ 
Px ∩ Qx  has a solution. Indeed, for any x0 ∈ Y, there exists a sequence {xn} in Y such 
that        

(I) fx2n+1 ∈ Px2n,   fx2n+2 ∈ Qx2n+1,  n =  0, 1,  … ; 

(II) the sequence  {fxn} converges to fz for some  z ∈ Y,  and fz ∈ Pz ∩ Qz; 

(III)  d(fxn, fz)  ≤  [sβn/(1 - sβ)]d(fx0, fx1). 

Proof.  It may be completed following the proofs of Theorems 3.1 and 3.3. □ 

 Assume that 0 < q, k < 1 and α  : = max{q1- k, sq1–k/(2 - sq1–k )}. 

Theorem 3.3.  Let Y be an arbitrary nonempty set and (X, d) a b-metric space. Let  

P, Q : Y → CL(X) and f : Y → X   such that  P(Y) ∪ Q(Y)  ⊆ f(Y) and  the condition (1)  
for all x, y ∈ Y.  If  sq1-k < 1, αs < 1,  and one of  P(Y), Q(Y)  or  f(Y)  is a complete 
subspace of  X, then fx ∈ Px ∩ Qx  has a solution. Indeed, for any x0 ∈ Y, there exists 
a sequence {xn} in Y such that        

(I) fx2n+1 ∈ Px2n  and   fx2n+2 ∈ Qx2n+1,  n =  0, 1, … ; 

(II) the sequence  {fxn} converges to fz for some  z ∈ Y, and fz ∈ Pz ∩ Qz; 

(III) d(fxn, fz)  ≤  [sαn/(1 - sα)]d(fx0, fx1). 

Proof.   Pick x0 ∈Y. Notice that q–k >1 since 0 < q, k < 1. We construct sequences {xn} 
in Y and {fxn} in X in the following manner. Since P(Y) ⊆ f(Y),  we can find a point  
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x1 ∈ Y such that fx1  ∈ Px0. Noting that Q(Y) is also a subspace of f(Y), we, for a 
suitable point  x2 ∈ Y, can choose a point fx2 ∈ Qx1 such that    

                          d(fx1, fx2)  ≤  q–k H(Px0, Qx1). 

We remark that such a choice is possible by Lemma 2.2. In general, we can 
choose a sequence {xn} in Y such that  

                     fx2n+1 ∈ Px2n, fx2n+2 ∈ Qx2n+1, fx2n+3 ∈ Px2n+2   

and  

                    d(fx2n+1, fx2n+2)  ≤  q–k H(Px2n, Qx2n+1),   

                    d(fx2n+2, fx2n+3)  ≤  q–k H(Qx2n+1, Px2n+2).  

 Taking yn : = fxn,  dn : = d(yn, yn+1) and λ  : = q1-k , by (1), 

         d2n+1 = d(fx2n+1, fx2n+2)  ≤  λ.max{d2n, d2n, d2n+1, [d(y2n, y2n+2) + 0]/2} 

                                               ≤  λ.max{d2n, d2n+1, s[d2n +  d2n+1]/2}, 

giving d2n+1  ≤  αd2n, where  α = max{λ, λs/(2 - λs)}. 

Similarly, by (1),              

               d2n+2  ≤  q–k H(Px2n+2, Qx2n+1)    

                         ≤  λ.max{d2n+1, d2n+2, d2n+1, [0 + d(y2n+1, y2n+3)]/2}, 

                         ≤  λ.max{d2n+1, d2n+2, s[d2n+1 +  d2n+2]/2}, 

giving     d2n+2  ≤  αd2n+1. 

Thus,  in general,  dn+1  ≤  αdn,  n = 0, 1, …. 

Note that 0 < α < 1, and by hypothesis αs < 1.  So,  by Lemma 3.1,  {yn} is a 
Cauchy sequence. If we assume that f(Y) is a complete subspace of X, then the 
sequence {yn} and its subsequences {y2n} and {y2n+1} have a limit in f(Y). Call it u. 
Then there exists a point z ∈ Y such that fz = u. By (1),         

d(fx2n+2, Pz)  ≤  H(Qx2n+1, Pz) = H(Pz, Qx2n+1) 

                      ≤  q.max{d(fz, fx2n+1), d(fz, Pz),                                                
d(fx2n+1, Qx2n+1), [d(fz, Qx2n+1) + d(fx2n+1, Pz)]/2} 

                      ≤  q.max{d(fz, fx2n+1), d(fz, Pz),                                                
d(fx2n+1, fx2n+2), [d(fz, fx2n+2) + d(fx2n+1, Pz)]/2}. 

Making n → ∞,   d(fz, Pz)  ≤  qd(fz, Pz).    
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 This gives fz ∈ Pz, since 0 < q < 1 and Pz  is closed. Similarly fz ∈ Qz. Thus fz ∈ 
Pz ∩ Qz.   

The above argument applies to the case when P(Y) or Q(Y) is a complete 
subspace of X, since P(Y) and Q(Y) are contained in f(Y). This proves (I) and (II). 
The proof of the last part is analogous to that of Theorem 3.1 (III).    □ 

Corollary 3.1. Let P : Y → CL(X) and f : Y → X   such that  P(Y) ⊆ f(Y) and (SK) (cf. 
Th. 1.1) holds for all x, y ∈ Y. If one of P(Y) or f(Y) is a complete subspace of X, then 
fx ∈ Px has a solution. Indeed, for any x0 ∈ Y, there exists a sequence {xn} in Y such 
that conclusions (I), (II) of Theorem 3.1 and the conclusion (III) of Theorem 3.3 hold. 

Proof.  It comes from Theorem 3.3 when P = Q.      □ 

 

We remark that Corollary 3.1 is an extension of Theorem 1.1 to b-metric spaces. 
Certain results of Czerwik [6, 7] and Singh et al. [32] are particular cases of the above 
corollary. 

 

4. Fixed Point Theorems 
We apply coincidence theorems of the previous section to study solutions of x = fx ∈ 
Px, x ∈ Px,  x =  fx ∈ Px ∩ Qx  and  x ∈ Px ∩ Qx,  for  P, Q : X → CL(X) and f : X 
→ X. 

Theorem 4.1.  Let all the hypotheses of Theorem 3.1 be satisfied with Y = X.  If  f  
and  P  are (IT)-commuting just at a coincidence point  z (say) of  f  and  P,  and if  u 
= fz  is fixed point of  f,  then  u  is a common fixed point of  f  and  P. 

Proof.  It comes from Theorem 3.1 that there exist points z, u ∈ X such that   

u = fz ∈ Pz. 

If u is a fixed point of u = fu and f, P are (IT)-commuting at z then   

u = fu = ffz ∈ fPz ⊆ Pfz = Pu. 

This completes the proof.        □ 

Theorem 4.2.  Let all the hypotheses of Theorem 3.2 be satisfied with Y = X.  If  f  is  
(IT)-commuting with each of  P and  Q  at their common  coincidence point  z,  and if  
 u = fz  is fixed point of  f,  then   f, P  and  Q  have a common fixed point, i.e.,  
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                                          u = fu ∈ Pu ∩ Qu.  

Proof.  It comes from Theorem 3.2 that there exist z, u ∈ X such that   

u = fz ∈ Pz  and  u = fz ∈ Qz.  Since u = fu, the (IT)-commutativity of f and P 
implies that  
u = fu = ffz ∈ fPz ⊆ Pfz = Pu.  Similarly u = fu ∈ Qu. So u = fu ∈ Pu ∩ Qu. This 
completes the proof.          □ 

Theorem 4.3.  Let all the hypotheses of Theorem 3.3 be satisfied with Y = X.  If f is 
(IT)-commuting with each of  P and  Q  at one of their common  coincidences  z 

(say),  and if  u = fz  is a fixed point of  f,  then   f, P  and  Q  have a common fixed 
point, i.e.,  u = fu ∈ Pu ∩ Qu. 

Proof.  It comes from Theorem 3.3 that there exist points z, u ∈ X such that   

u = fz ∈ Pz ∩ Qz. The rest part of the proof is now evident.   □ 

Now we derive some corollaries. 

Corollary 4.1.  Let (X, d) be a complete b-metric space and P, Q : X → CL(X)  such 
that  H(Px, Qy)  ≤  q.max{d(x, y), d(x, Px), d(y, Qy), [d(x, Qy) + d(y, Px)]/2} for all  x, 
y ∈ X,  where  0 < q, k < 1, sq1-k < 1  with  αs < 1.  Then the functional inclusion 
x ∈ Px ∩ Qx has a solution. 

Proof.  It comes from Theorem 3.3 with Y = X when f = is the identity map on X.   □ 

Corollary 4.2.  Let (X, d) be a complete b-metric space and P, Q : X → CL(X)  such 
that 

           H 2(Px, Qy)  ≤  q.max{d2(x, y), d(x, y).d(x, Px), d(x, y).d(y, Qy),  

                                              d(x, y).[d(x, Qy) + d(y, Px)]/2,  

                                              d(x, Px).d(y, Qy), d(x, Px).[d(x, Qy) + d(y, Px)]/2,  

                                              d(y, Qy).[d(x, Qy) + d(y, Px)]/2, d(x, Qy).d(y, Px)}, 

where 0 < q, k < 1, sq1-k < 1  with  βs < 1. Then x ∈ Px ∩ Qx  has a solution. 

Proof.  It comes from Theorem 3.2 with Y = X when f = is the identity map on  X. □  
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The following result is an extension of the main result of Ciric [3] and Theorem 
1.1 with f the identity map on X.  

Corollary 4.3.  Let (X, d) be a complete b-metric space and P : X → CL(X)  such that  

       H(Px, Py)  ≤  q.max{d(x, y), d(x, Px), d(y, Py), [d(x, Py) + d(y, Px)]/2}     (C-1) 

for all  x, y ∈ X,  where  0 < q, k < 1, sq1-k < 1  with  αs < 1.  Then x ∈ Px has a 
solution. 

Proof.  It comes from Corollary 4.1 with P = Q.     □ 

Ciric [3] was the first to study the contraction (C-1) in a metric space. Using a 
similar condition for a pair of multivalued maps in a metric space, Khan [17] obtained 
some interesting fixed point theorems in metric spaces. We remark that Corollary 4.3 
is an improvement in respect of the statement of a main result of Singh et al. [32, Th. 
4.1]. Further, the above corollaries improve and extend several fixed point theorems 
for multivalued maps in metric and b-metric spaces (see, for instance, [1], [5], [6, 7], 
[17] and [23]).  

The following question merits attention: Does the Corollary 4.3 hold when (C-1) 
is replaced by  

     H(Px, Py)  ≤  q.max{d(x, y), d(x, Px), d(y, Py), d(x, Py), d(y, Px)}.         (C-2) 

We remark that (C-2) is the main contraction condition due to Ciric [4] when X is 
a metric space and P is a single-valued map on X.   
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