Coincidences and Fixed Points of Hybrid Contractions*

Shyam Lal Singh ${ }^{+}$
Gurukula Kangri University, Hardwar Mailing address: 21, Govind Nagar Rishikesh, 249201, India
Stefan Czerwik ${ }^{\ddagger}$, Krzysztof Król ${ }^{\S}$
Institute of Mathematics Silesian University of Technology,
Kaszubska 23, 44-100 Gliwice, Poland
and
Abha Singh ${ }^{* *}$
Advance Institute of Science and Technology 179,
Kalidas Road, Dehradun-248001, India

Received June 4, 2008, Accepted June 4, 2008.

Abstract

In this paper we study the existence of coincidences and fixed points of generalized hybrid contractions involving single-valued and multivalued maps in generalized metric spaces. Some special cases are also discussed.

Keywords and Phrases : Coincidence point;Fixed point; Hybrid contraction.

[^0]
1. Introduction

Hybrid fixed point theory is a recent development is the ambit of fixed point theorems for contracting single-valued and multivalued maps in metric spaces. Indeed, the study of such maps was initiated during 1980-83 by Bhaskaran and Subrahmanyam [2], Hadzic [10], Kaneko [14], Kulshrestha [18], Kubiak [19], Naimpally et al. [25] and Singh and Kulshrestha [35]. For a history of the fundamental work on this line, refer to Singh and Mishra [37], and for more recent work on this line Beg and Azam [1], Jungck and Rhoades [12], Kamran [13], Kaneko [15], Kaneko and Sessa [16], Liu, Wu, and Li [20], Mishra, Singh and Talwar [22], Naidu [24], Pathak et al. [26], Popa [27], Rhoades et al. [28], Shahzad [30], and Singh et al.[31, 33, 34, 36-40]. Hybrid fixed point theory has potential applications in functional inclusions, optimization theory, fractal graphics and discrete dynamics for set-valued operators.

The following fundamental coincidence theorem for a pair of multivalued and single-valued maps is essentially due to Singh and Kulshrestha [35] (see also [18] and [37]).

Theorem 1.1 ([35]). Let X be a metric space and $(C L(X)$, H) the Hausdorff metric space induced by d, where $C L(X)$ is the collection of all nonempty closed subsets of X. Let $P: X \rightarrow C L(X)$ and $f: X \rightarrow X$ be such that $P(X) \subseteq f(X)$ and

$$
\begin{equation*}
H(P x, P y) \leq q \cdot \max \{d(f x, f y), d(f x, P x), d(f y, P y),[d(f x, P y)+d(f y, P x)] / 2\} \tag{SK}
\end{equation*}
$$

for all $x, y \in X$, where $0 \leq q<1$. If $f(X)$ [or $P(X)]$ is a complete subspace of X, then P and f have a coincidence, i.e., there exists a point $z \in X$ such that $f z \in P z$.

We remark that under the conditions of Theorem 1.1, f and P need not have a common fixed point even if f and P are commuting (cf. Def. 2.3) and continuous as the following example shows (see also [25, 33, 37-40]).

Example 1.1 ([25]). Let $\mathrm{X}=[0, \infty)$ be endowed with the usual metric,
$P x=[1+x, \infty)$ and $f x=2 x$. Then $P(X) \subseteq f(X)=X$. Further
$H(P x, P y) \leq q d(f x, f y), \quad x, y \in X, \quad 1 / 2 \leq q<1$.
(NSW)
Thus P and f satisfy all the requirements of Theorems 1.1 , since (NSW) implies (SK).
Evidently, P and f have a coincidence point $\mathrm{z}(\geq 1)$, i.e., $\mathrm{fz} \in \mathrm{Pz}$ for any $\mathrm{z} \geq 1$. Notice that P and f have no common fixed points. Moreover, P is not a multivalued contraction in the sense of Nadler, Jr. [23], since $H(P x, P y)=d(x, y), x, y \in X$. (Recall that Nadler's multivalued contraction is (NSW) with $\mathrm{f}=$ the identity map on X , wherein $0 \leq \mathrm{q}<1$.)

Theorem 1.1 has been generalized and extended on various settings (see, for instance, [$1,20,24,27,28,34,36-40]$). In this paper, we obtain a few generalizations and extensions of Theorem 1.1 and other similar results (cf. [15] and [31]). Using these coincidence theorems, we obtain a few fixed point theorems, wherein continuity of maps is not needed, completeness of the space is relaxed to the completeness of a subspace, and the commutativity requirement is tight and minimal.

2. Preliminaries

Consistent with [7] and [32], we use the following notations and definitions.
Definition 2.1 ([7]). Let X be (nonempty) a set and $s \geq 1$ a given real number. A function
$d: X \times X \rightarrow R^{+}$(nonnegative real numbers) is called a b-metric provided that, for all $x, y, z \in X$,

$$
\begin{aligned}
d(x, y) & =0 \text { iff } x=y, \\
d(x, y) & =d(y, x) \\
d(x, z) & \leq s[d(x, y)+d(y, z)] .
\end{aligned}
$$

The pair (X, d) is called a b-metric space.
We remark that a metric space is evidently a b-metric space. However, Czerwik [6, 7] has shown that a b-metric on X need not be a metric on X (see also [8, 9, 32]).

Definition 2.2 ([7]). Let (X, d) be a b-metric space. The Hausdorff b-metric H on $C L(X)$, the collection of all nonempty closed subsets of (X, d) is defined as follows:

$$
H(A, B):=\left\{\begin{array}{l}
\max \left\{\sup _{x \in A} d(x, B), \sup _{y \in B} d(y, A)\right\}, \quad \text { if the maximum exists, } \\
\infty, \quad \text { otherwise. }
\end{array}\right.
$$

In all that follows Y is an arbitrary nonempty set and (X, d) a b-metric space unless otherwise specified. For the following definition in a metric space, one may refer to Itoh and Takahashi [11] and Singh and Mishra [39].

Definition 2.3. Let Y be a nonempty set, $f: Y \rightarrow Y$ and $P: Y \rightarrow 2^{Y}$, the collection of all nonempty subsets of Y. Then the hybrid pair (P, f) is (IT)-commuting at $x \in Y$ if $f P x \subseteq P f x$ for each $x \in Y$.

We cite the following lemmas from Czerwik [7-9] and Singh et al. [31, 32].
Lemma 2.1. For any $A, B, C \in C L(X)$,
(i) $d(x, B) \leq d(x, y)$ for any $y \in B$,
(ii) $d(A, B) \leq H(A, B)$,
(iii) $d(x, B) \leq H(A, B), \quad x \in A$
(iv) $H(A, C) \leq s[H(A, B)+H(B, C)]$,
(v) $\quad d(x, A) \leq \operatorname{sd}(x, y)+\operatorname{sd}(y, A), \quad x, y \in X$.

Lemma 2.2. Let A and $B \in C L(X)$. Then for any $x \in A$ and for some $0<q, k<1$, there exists a $y \in B$ such that

$$
d^{2}(x, y) \leq q^{-k} H^{2}(A, B) .
$$

For an excellent collection of such results in metric spaces, one may refer to Rus [29].
Lemma 2.2 in a metric space is essentially due to Nadler, Jr. [23] (see also [3] and [5]).

3. Coincidence Theorems

We begin with the following result.
Lemma 3.1. Let (X, d) be a b-metric space and $\left\{y_{n}\right\}$ a sequence in X such that

$$
d\left(y_{n+1}, y_{n+2}\right) \leq q d\left(y_{n}, y_{n+1}\right), \quad n=0,1, \cdots,
$$

where $0 \leq q<1$. Then the sequence $\left\{y_{n}\right\}$ is Cauchy sequence in X provided that $s q<1$.
Proof. For any n,

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}+2}\right) & \leq \mathrm{qd}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right) \\
& \leq \mathrm{q}^{2} \mathrm{~d}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}\right) \leq \cdots \leq \mathrm{q}^{\mathrm{n}+1} \mathrm{~d}\left(\mathrm{y}_{0}, \mathrm{y}_{1}\right) .
\end{aligned}
$$

For $\mathrm{n}<\mathrm{m}$, by the triangle inequality (cf. Def. 2.1 (bm-3)),

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{m}}\right) & \leq \operatorname{sd}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)+\mathrm{s}^{2} \mathrm{~d}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}+2}\right)+\cdots+\mathrm{s}^{\mathrm{m}-\mathrm{n}-2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{m}-2}, \mathrm{y}_{\mathrm{m}-1}\right)+\mathrm{d}\left(\mathrm{y}_{\mathrm{m}-1}, \mathrm{y}_{\mathrm{m}}\right)\right] \\
& <\operatorname{sq}^{\mathrm{n}}\left(1+\mathrm{sq}+\mathrm{s}^{2} \mathrm{q}^{2}+\cdots\right) \mathrm{d}\left(\mathrm{y}_{0}, \mathrm{y}_{1}\right) \\
& =\left[\mathrm{sq}^{\mathrm{n}} /(1-\mathrm{sq})\right] \mathrm{d}\left(\mathrm{y}_{0}, \mathrm{y}_{1}\right) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty,
\end{aligned}
$$

and $\left\{y_{n}\right\}$ is Cauchy.

Following Liu et al. [21], Singh et al. [33, 35] and Tan et al. [41], we consider the following conditions for $\mathrm{f}: \mathrm{Y} \rightarrow \mathrm{X}$ and $\mathrm{P}, \mathrm{Q}: \mathrm{Y} \rightarrow \mathrm{CL}(\mathrm{X})$:

$$
\begin{gather*}
H(P x, Q y) \leq q \cdot \max \{d(f x, f y), d(f x, P x), d(f y, Q y), \\
[d(f x, Q y)+d(f y, P x)] / 2\}, x, y \in X, \tag{1}
\end{gather*}
$$

where $\mathrm{q} \in(0,1)$; and

$$
\begin{equation*}
H^{2}(P x, P y) \leq q \cdot \max m(x, y), x, y \in X, \tag{2}
\end{equation*}
$$

where $\mathrm{q} \in(0,1)$ and

$$
\begin{aligned}
m(x, y):=\max & \left\{d^{2}(f x, f y), d(f x, f y) \cdot d(f x, P x), d(f x, f y) \cdot d(f y, P y),\right. \\
& d(f x, f y) \cdot[d(f x, P y)+d(f y, P x)] / 2 \\
& d(f x, P x) \cdot d(f y, P y), d(f x, P x) \cdot[d(f x, P y)+d(f y, P x)] / 2 \\
& d(f y, P y) \cdot[d(f x, P y)+d(f y, P x)] / 2, d(f x, P y) \cdot d(f y, P x)\} .
\end{aligned}
$$

We remark that (1) with $\mathrm{P}=\mathrm{Q}$ and $\mathrm{Y}=\mathrm{X}$, a metric space is (SK), while the main condition studied in [31] is based on the work of [21] and [41], and is a particular case of (2).

Assume that $\beta:=\mathrm{sq}^{1-\mathrm{k}}\left[1+\sqrt{ }\left(1+8 \mathrm{q}^{-1+\mathrm{k}} \mathrm{s}^{-1}\right)\right] / 4$, where $0<\mathrm{q}, \mathrm{k}<1$.
Theorem 3.1. Let Y be an arbitrary nonempty set and (X, d) a b-metric space. Let
$P: Y \rightarrow C L(X)$ and $f: Y \rightarrow X$ be such that $P(Y) \subseteq f(Y)$ and (2) holds for all x, y $\in Y$. If sq ${ }^{1-k}<1, \beta s<1$ and one of $P(Y)$ or $f(Y)$ is a complete subspace of X, then $f x$ $\in P x$ has a solution, that is P and f have a coincidence. Indeed, for any $x_{0} \in Y$, there exists a sequence $\left\{x_{n}\right\}$ in Y such that
(I) $f x_{n+1} \in P x_{n}, \quad n=0,1,2, \cdots$;
(II) the sequence $\left\{f x_{n}\right\}$ converges to $f z$ for some $z \in Y$, and $f z \in P z$, that is, P and f have a coincidence at z; and
(III) $d\left(f x_{n}, f z\right) \leq\left[s \beta^{n} /(1-s \beta)\right] d\left(f x_{0}, f x_{l}\right)$.

Proof. Pick $\mathrm{x}_{0} \in \mathrm{Y}$. Let k be a positive number such that $\mathrm{k}<1$. Following Kulshrestha [18] and Singh and Kulshrestha [35], we construct sequences $\left\{x_{n}\right\} \subseteq Y$ and $\left\{\mathrm{fx}_{\mathrm{n}}\right\} \subseteq X$ in the following manner. Since $\mathrm{P}(\mathrm{Y}) \subseteq f(Y)$, we may choose a point x_{1} $\in \mathrm{Y}$ such that $\mathrm{fx}_{1} \in \mathrm{Px}_{0}$.

If $\mathrm{Px}_{0}=\mathrm{Px}_{1}$ then $\mathrm{x}_{1}=\mathrm{z}$ is a coincidence point of P and f , and we are done. So assume that $\mathrm{Px}_{0} \neq \mathrm{Px}_{1}$.

Now the condition $\mathrm{P}(\mathrm{Y}) \subseteq \mathrm{f}(\mathrm{Y})$ and Lemma 2.2 allow us to choose a point $\mathrm{x}_{2} \in \mathrm{Y}$ such that $\mathrm{fx}_{2} \in \mathrm{Px}_{1}$ and

$$
\mathrm{d}^{2}\left(\mathrm{fx}_{1}, \mathrm{fx}_{2}\right) \leq \mathrm{q}^{-\mathrm{k}} \mathrm{H}^{2}\left(\mathrm{Px}_{0}, \mathrm{Px}_{1}\right)
$$

If $\mathrm{Px}_{1}=\mathrm{Px}_{2}$, then x_{2} becomes a coincidence point of P and f . If not, continue the process. In general, if $\mathrm{Px}_{\mathrm{n}} \neq \mathrm{Px}_{n+1}$, we choose $\mathrm{fx}_{\mathrm{n}+2} \in \mathrm{Px}_{\mathrm{n}+1}$ such that

$$
d^{2}\left(\mathrm{fx}_{\mathrm{n}+1}, \mathrm{fx}_{\mathrm{n}+2}\right) \leq \mathrm{q}^{-\mathrm{k}} \mathrm{H}^{2}\left(\mathrm{Px}_{\mathrm{n}}, P \mathrm{x}_{\mathrm{n}+1}\right) .
$$

Then by (2),

$$
\begin{aligned}
& \mathrm{d}^{2}\left(\mathrm{fx}_{\mathrm{n}+1}, \mathrm{fx}_{\mathrm{n}+2}\right) \leq \mathrm{q}^{-\mathrm{k}} \mathrm{H}^{2}\left(\mathrm{Px}_{\mathrm{n}}, \mathrm{Px}_{\mathrm{n}+1}\right), \\
& \leq q^{1-k} \cdot \max \left\{d^{2}\left(\mathrm{fx}_{\mathrm{n}}, f \mathrm{fx}_{\mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{fx}_{\mathrm{n}+1}\right) \mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, P \mathrm{X}_{\mathrm{n}}\right),\right. \\
& \mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{fx}_{\mathrm{n}+1}\right) \cdot \mathrm{d}\left(\mathrm{fx}_{\mathrm{n}+1}, \mathrm{Px}_{\mathrm{n}+1}\right) \text {, } \\
& \mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{fx}_{\mathrm{n}+1}\right) \cdot\left[\mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{Px}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{fx}_{\mathrm{n}+1}, P \mathrm{P}_{\mathrm{n}}\right)\right] / 2 \text {, } \\
& \mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{Px}_{\mathrm{n}}\right) \cdot \mathrm{d}\left(\mathrm{fx}_{\mathrm{n}+1}, \mathrm{Px}_{\mathrm{n}+1}\right) \text {, } \\
& \mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{Px} \mathrm{x}_{\mathrm{n}}\right) \cdot\left[\mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{Px}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{fx}_{\mathrm{n}+1}, \mathrm{Px}_{\mathrm{n}}\right)\right] / 2, \\
& \mathrm{~d}\left(\mathrm{fx}_{\mathrm{n}+1}, \mathrm{Px}_{\mathrm{n}+1}\right) \cdot\left[\mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{Px}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{fx}_{\mathrm{n}+1}, \mathrm{Px}_{\mathrm{n}}\right)\right] / 2 \text {, } \\
& \left.\mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{Px}_{\mathrm{n}+1}\right) \mathrm{d}\left(\mathrm{fx}_{\mathrm{n}+1}, \mathrm{Px}_{\mathrm{n}}\right)\right\} \text {. }
\end{aligned}
$$

For the sake of simplicity, we take $y_{n}:=f x_{n}, d_{n}:=d\left(y_{n}, y_{n+1}\right)$ and $\lambda:=q^{1-k}$.
Then the above inequality, after simplification, yields

$$
\left.\mathrm{d}_{\mathrm{n}+1}^{2} \leq \lambda \cdot \max \left\{\mathrm{d}_{\mathrm{n}}^{2}, \mathrm{~d}_{\mathrm{n}} \mathrm{~d}_{\mathrm{n}+1}, \mathrm{~d}_{\mathrm{n}}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+2}\right)\right] / 2, \mathrm{~d}_{\mathrm{n}+1}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+2}\right)\right] / 2\right)\right\},
$$

that is

$$
\begin{equation*}
\mathrm{d}_{\mathrm{n}+1}^{2} \leq \lambda \cdot \max \left\{\mathrm{d}_{\mathrm{n}}^{2}, \mathrm{~d}_{\mathrm{n}} \mathrm{~d}_{\mathrm{n}+1}, \mathrm{~s}\left(\mathrm{~d}_{\mathrm{n}}\left[\mathrm{~d}_{\mathrm{n}}+\mathrm{d}_{\mathrm{n}+1}\right] / 2\right), \mathrm{s}\left(\mathrm{~d}_{\mathrm{n}+1}\left[\mathrm{~d}_{\mathrm{n}}+\mathrm{d}_{\mathrm{n}+1}\right] / 2\right)\right\} . \tag{3}
\end{equation*}
$$

We remark that in the construction of sequences $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{fx}_{\mathrm{n}}\right\}, \mathrm{x}_{\mathrm{n}}$ (for each n) is not a coincidence point of P and f. This together with $P x_{n} \neq P x_{n+1}$ means that $\mathrm{fx}_{\mathrm{n}} \neq$ $\mathrm{fx}_{\mathrm{n}+1}$. Indeed, if at any stage $\mathrm{fx}_{\mathrm{n}}=\mathrm{fx}_{\mathrm{n}+1}$ then $\mathrm{fx}_{\mathrm{n}} \in \mathrm{Px}_{\mathrm{n}}$ and $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is a coincidence point of P and f . Therefore, according to our construction of the sequences, $\mathrm{d}_{\mathrm{n}} \neq 0$. Hence the inequality (3) implies one of the following:

$$
\mathrm{d}^{2}{ }_{\mathrm{n}+1} \leq \lambda \mathrm{d}_{\mathrm{n}}^{2}
$$

that is

$$
\begin{aligned}
\mathrm{d}_{\mathrm{n}+1} & \leq \sqrt{ } \lambda \mathrm{d}_{\mathrm{n}} \\
\mathrm{~d}^{2}{ }_{\mathrm{n}+1} & \leq \lambda \mathrm{d}_{\mathrm{n}} \mathrm{~d}_{\mathrm{n}+1} \text { implies } \mathrm{d}_{\mathrm{n}+1} \leq \lambda \mathrm{d}_{\mathrm{n}} ;
\end{aligned}
$$

$$
\mathrm{d}_{\mathrm{n}+1}^{2} \leq \lambda \mathrm{s}\left(\mathrm{~d}_{\mathrm{n}}\left[\mathrm{~d}_{\mathrm{n}}+\mathrm{d}_{\mathrm{n}+1}\right] / 2\right) \text { being a quadratic inequality in }
$$

$\mathrm{d}_{\mathrm{n}+1}$ gives

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{n}+1} \leq\left[\lambda \mathrm{s} / 4+\sqrt{ }\left(\left(\lambda^{2} \mathrm{~s}^{2} / 16\right)+\lambda \mathrm{s} / 2\right)\right] \mathrm{d}_{\mathrm{n}} \\
& \quad=\left\{\lambda \mathrm{s}\left[1+\sqrt{ }\left(1+8(\lambda \mathrm{~s})^{-1}\right)\right] / 4\right\} \mathrm{d}_{\mathrm{n}} \\
& \mathrm{~d}_{\mathrm{n}+1}^{2} \leq \lambda \mathrm{s}\left(\mathrm{~d}_{\mathrm{n}+1}\left[\mathrm{~d}_{\mathrm{n}}+\mathrm{d}_{\mathrm{n}+1}\right] / 2\right) \text { implies } \mathrm{d}_{\mathrm{n}+1} \leq[\lambda \mathrm{s} /(2-\lambda \mathrm{s})] \mathrm{d}_{\mathrm{n}} .
\end{aligned}
$$

These four outcomes together imply

$$
\mathrm{d}_{\mathrm{n}+1} \leq \max \left\{\sqrt{ } \lambda, \lambda, \lambda \mathrm{s}\left[1+\sqrt{ }\left(1+8(\lambda \mathrm{~s})^{-1}\right)\right] / 4, \lambda \mathrm{~s} /(2-\lambda \mathrm{s})\right\} \mathrm{d}_{\mathrm{n}}=\beta \mathrm{d}_{\mathrm{n}},
$$

where $\beta:=\lambda \mathrm{s}\left[1+\sqrt{ }\left(1+8(\lambda \mathrm{~s})^{-1}\right)\right] / 4$. Notice that $0<\beta<1$ and $\beta \mathrm{s}<1$. So, by Lemma 3.1, $\left\{\mathrm{fx}_{\mathrm{n}}\right\}$ is a Cauchy sequence. Now let $\mathrm{f}(\mathrm{Y})$ be a complete subspace of X . Then the sequence $\left\{\mathrm{fx}_{\mathrm{n}}\right\}$ has a limit in $\mathrm{f}(\mathrm{Y})$. Call it u . Hence, there exists a point $\mathrm{z} \in \mathrm{Y}$ such that $\mathrm{fz}=\mathrm{u}$. Since $\left\{\mathrm{fx}_{\mathrm{n}}\right\}$ converges to fz ,

$$
\mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{Px}_{\mathrm{n}}\right) \leq \mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{fx}_{\mathrm{n}+1}\right) \text { implies that } \mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{Px}_{\mathrm{n}}\right) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty .
$$

By Lemma 2.1 (iii) and (2),

$$
\begin{aligned}
& \mathrm{d}^{2}\left(\mathrm{fx}_{\mathrm{n}+1}, \mathrm{Pz}\right) \leq \mathrm{q}^{-\mathrm{k}} \mathrm{H}^{2}\left(\mathrm{Px}_{\mathrm{n}}, \mathrm{Pz}\right) \\
& \leq q^{1-k} \cdot \max \left\{d^{2}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{fz}\right), \mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{fz}\right) \cdot \mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, P \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{fz}\right) \cdot \mathrm{d}(\mathrm{fz}, \mathrm{Pz}),\right. \\
& d\left(f x_{n}, f z\right) \cdot\left[d\left(f x_{n}, P z\right)+d\left(f z, P x_{n}\right)\right] / 2, d\left(f x_{n}, P x_{n}\right) \cdot d(f z, P z), \\
& \mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{Px} \mathrm{x}_{\mathrm{n}}\right) \cdot\left[\mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{Pz}\right)+\mathrm{d}\left(\mathrm{fz}, \mathrm{Px}_{\mathrm{n}}\right)\right] / 2 \text {, } \\
& \left.\mathrm{d}(\mathrm{fz}, \mathrm{Pz}) \cdot\left[\mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{Pz}\right)+\mathrm{d}\left(\mathrm{fz}, \mathrm{Px}_{\mathrm{n}}\right)\right] / 2, \mathrm{~d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{Pz}\right) . \mathrm{d}\left(\mathrm{fz}, \mathrm{Px} \mathrm{x}_{\mathrm{n}}\right)\right\} .
\end{aligned}
$$

Making $\mathrm{n} \rightarrow \infty, \mathrm{d}(\mathrm{fz}, \mathrm{Pz}) \leq \lambda \mathrm{d}(\mathrm{fz}, \mathrm{Pz})$.

This yields $\mathrm{fz} \in \mathrm{Pz}$, since Pz is closed and $\lambda<1$. This argument applies to the case when $P(Y)$ is a complete subspace of X, since $P(Y) \subseteq f(Y)$.

This proves (I) and (II).
For $\mathrm{n}<\mathrm{m}$,

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{fx}_{\mathrm{m}}\right) \leq & \operatorname{sd}\left(\mathrm{fx}_{\mathrm{n}}, \mathrm{fx}_{\mathrm{n}+1}\right)+\mathrm{s}^{2} \mathrm{~d}\left(\mathrm{fx}_{\mathrm{n}+1}, \mathrm{fx}_{\mathrm{n}+2}\right)+\cdots+\mathrm{s}^{\mathrm{m}-\mathrm{n}-2}\left[\mathrm{~d}\left(\mathrm{fx}_{\mathrm{m}-2}, \mathrm{fx}_{\mathrm{m}-1}\right)\right. \\
& \left.+\mathrm{d}\left(\mathrm{fx}_{\mathrm{m}-1}, \mathrm{fx} \mathrm{x}_{\mathrm{m}}\right)\right] \\
< & \mathrm{s} \beta^{n}\left(1+\mathrm{s} \beta+\mathrm{s}^{2} \beta^{2}+\cdots\right) \mathrm{d}\left(\mathrm{fx}_{0}, \mathrm{fx}_{1}\right) \\
= & {\left[\mathrm{s} \beta^{\mathrm{n}} /(1-\mathrm{s} \beta)\right] \mathrm{d}\left(\mathrm{fx}_{0}, \mathrm{fx}_{1}\right) . }
\end{aligned}
$$

This in the limit ($\mathrm{m} \rightarrow \infty$) yields (III).

Now we extend Theorem 3.1 to the setting of a pair of multivalued maps and a single-valued map on Y with values in a b-metric space X .

Theorem 3.2. Let $P, Q: Y \rightarrow C L(X)$ and $f: Y \rightarrow X$ such that $P(Y) \cup Q(Y) \subseteq f(Y)$ and the following holds for all $x, y \in Y$:

$$
\begin{aligned}
H^{2}(P x, Q y) \leq & q \cdot \max \left\{d^{2}(f x, f y), d(f x, f y) \cdot d(f x, P x), d(f x, f y) \cdot d(f y, Q y),\right. \\
& d(f x, f y) \cdot[d(f x, Q y)+d(f y, P x)] / 2, \\
& d(f x, P x) \cdot d(f y, Q y), d(f x, P x) \cdot[d(f x, Q y)+d(f y, P x)] / 2, \\
& d(f y, Q y) \cdot[d(f x, Q y)+d(f y, P x)] / 2, d(f x, Q y) \cdot d(f y, P x)\},
\end{aligned}
$$

where $0<q<1$. If one of $P(Y), Q(Y)$ or $f(Y)$ is a complete subspace of X, then $f x \in$ $P x \cap Q x$ has a solution. Indeed, for any $x_{0} \in Y$, there exists a sequence $\left\{x_{n}\right\}$ in Y such that
(I) $f x_{2 n+1} \in P x_{2 n}, f x_{2 n+2} \in Q x_{2 n+1}, n=0,1, \cdots$;
(II) the sequence $\left\{f_{n}\right\}$ converges to $f z$ for some $z \in Y$, and $f z \in P z \cap Q z$;
(III) $d\left(f x_{n}, f z\right) \leq\left[s \beta^{n} /(1-s \beta)\right] d\left(f x_{0}, f x_{1}\right)$.

Proof. It may be completed following the proofs of Theorems 3.1 and 3.3.

$$
\text { Assume that } 0<\mathrm{q}, \mathrm{k}<1 \text { and } \alpha:=\max \left\{\mathrm{q}^{1-\mathrm{k}}, \mathrm{sq}^{1-\mathrm{k}} /\left(2-\mathrm{sq}^{1-\mathrm{k}}\right)\right\}
$$

Theorem 3.3. Let Y be an arbitrary nonempty set and (X, d) a b-metric space. Let $P, Q: Y \rightarrow C L(X)$ and $f: Y \rightarrow X$ such that $P(Y) \cup Q(Y) \subseteq f(Y)$ and the condition (1) for all $x, y \in Y$. If $s q^{I-k}<1, \alpha s<1$, and one of $P(Y), Q(Y)$ or $f(Y)$ is a complete subspace of X, then $f x \in P x \cap Q x$ has a solution. Indeed, for any $x_{0} \in Y$, there exists a sequence $\left\{x_{n}\right\}$ in Y such that
(I) $f x_{x_{2 n+1}} \in P x_{2 n}$ and $f x_{2 n+2} \in Q x_{2 n+1}, n=0,1, \cdots$;
(II) the sequence $\left\{f_{n}\right\}$ converges to fz for some $z \in Y$, and $f z \in P z \cap Q z$;
(III) $d\left(f x_{n}, f z\right) \leq\left[s \alpha^{n} /(1-s \alpha)\right] d\left(f x_{0}, f x_{l}\right)$.

Proof. Pick $\mathrm{x}_{0} \in \mathrm{Y}$. Notice that $\mathrm{q}^{-\mathrm{k}}>1$ since $0<\mathrm{q}, \mathrm{k}<1$. We construct sequences $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in Y and $\left\{\mathrm{fx}_{\mathrm{n}}\right\}$ in X in the following manner. Since $P(Y) \subseteq f(Y)$, we can find a point
$x_{1} \in Y$ such that $\mathrm{fx}_{1} \in \mathrm{Px}_{0}$. Noting that $\mathrm{Q}(\mathrm{Y})$ is also a subspace of $\mathrm{f}(\mathrm{Y})$, we, for a suitable point $x_{2} \in Y$, can choose a point $\mathrm{fx}_{2} \in \mathrm{Qx}_{1}$ such that

$$
\mathrm{d}\left(\mathrm{fx}_{1}, \mathrm{fx}_{2}\right) \leq \mathrm{q}^{-\mathrm{k}} \mathrm{H}\left(\mathrm{Px}_{0}, \mathrm{Qx}_{1}\right) .
$$

We remark that such a choice is possible by Lemma 2.2. In general, we can choose a sequence $\left\{x_{n}\right\}$ in Y such that

$$
\mathrm{fx}_{2 \mathrm{n}+1} \in \mathrm{Px}_{2 \mathrm{n}}, \mathrm{fx}_{2 \mathrm{n}+2} \in \mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{fx}_{2 \mathrm{n}+3} \in \mathrm{Px}_{2 \mathrm{n}+2}
$$

and

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{fx}_{2 n+1}, \mathrm{fx}_{2 n+2}\right) & \leq \mathrm{q}^{-\mathrm{k}} \mathrm{H}\left(\mathrm{Px}_{2 \mathrm{n}}, \mathrm{Qx}_{2 n+1}\right), \\
\mathrm{d}\left(\mathrm{fx}_{2 n+2}, \mathrm{fx}_{2 n+3}\right) & \leq q^{-k} H\left(\mathrm{Qx}_{2 n+1}, \mathrm{Px}_{2 n+2}\right) .
\end{aligned}
$$

Taking $\mathrm{y}_{\mathrm{n}}:=\mathrm{fx}_{\mathrm{n}}, \mathrm{d}_{\mathrm{n}}:=\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)$ and $\lambda:=\mathrm{q}^{1-\mathrm{k}}$, by (1),

$$
\begin{aligned}
\mathrm{d}_{2 \mathrm{n}+1}=\mathrm{d}\left(\mathrm{fx}_{2 \mathrm{n}+1}, \mathrm{fx}_{2 \mathrm{n}+2}\right) & \leq \lambda \cdot \max \left\{\mathrm{d}_{2 \mathrm{n}}, \mathrm{~d}_{2 \mathrm{n}}, \mathrm{~d}_{2 \mathrm{n}+1},\left[\mathrm{~d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+2}\right)+0\right] / 2\right\} \\
& \leq \lambda \cdot \max \left\{\mathrm{d}_{2 \mathrm{n}}, \mathrm{~d}_{2 \mathrm{n}+1}, \mathrm{~s}\left[\mathrm{~d}_{2 \mathrm{n}}+\mathrm{d}_{2 \mathrm{n}+1}\right] / 2\right\},
\end{aligned}
$$

giving $\mathrm{d}_{2 \mathrm{n}+1} \leq \alpha \mathrm{d}_{2 \mathrm{n}}$, where $\alpha=\max \{\lambda, \lambda \mathrm{s} /(2-\lambda \mathrm{s})\}$.
Similarly, by (1),

$$
\begin{aligned}
\mathrm{d}_{2 \mathrm{n}+2} & \leq \mathrm{q}^{-\mathrm{k}} \mathrm{H}\left(\mathrm{Px}_{2 \mathrm{n}+2}, \mathrm{Qx}_{2 \mathrm{n}+1}\right) \\
& \leq \lambda \cdot \max \left\{\mathrm{d}_{2 \mathrm{n}+1}, \mathrm{~d}_{2 \mathrm{n}+2}, \mathrm{~d}_{2 \mathrm{n}+1},\left[0+\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+3}\right)\right] / 2\right\}, \\
& \leq \lambda \cdot \max \left\{\mathrm{d}_{2 \mathrm{n}+1}, \mathrm{~d}_{2 \mathrm{n}+2}, \mathrm{~s}\left[\mathrm{~d}_{2 \mathrm{n}+1}+\mathrm{d}_{2 \mathrm{n}+2}\right] / 2\right\},
\end{aligned}
$$

giving $\quad \mathrm{d}_{2 \mathrm{n}+2} \leq \alpha \mathrm{d}_{2 \mathrm{n}+1}$.
Thus, in general, $\mathrm{d}_{\mathrm{n}+1} \leq \alpha \mathrm{d}_{\mathrm{n}}, \mathrm{n}=0,1, \cdots$.
Note that $0<\alpha<1$, and by hypothesis $\alpha \mathrm{s}<1$. So, by Lemma 3.1, $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ is a Cauchy sequence. If we assume that $f(Y)$ is a complete subspace of X, then the sequence $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ and its subsequences $\left\{\mathrm{y}_{2 \mathrm{n}}\right\}$ and $\left\{\mathrm{y}_{2 \mathrm{n}+1}\right\}$ have a limit in $\mathrm{f}(\mathrm{Y})$. Call it u . Then there exists a point $\mathrm{z} \in \mathrm{Y}$ such that $\mathrm{fz}=\mathrm{u}$. By (1),

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{fx}_{2 \mathrm{n}+2}, \mathrm{Pz}\right) \leq \mathrm{H}\left(\mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{Pz}\right)=\mathrm{H}\left(\mathrm{Pz}, \mathrm{Qx}_{2 \mathrm{n}+1}\right) \\
& \leq \mathrm{q} \cdot \mathrm{max}\left\{\mathrm{~d}\left(\mathrm{fz}, \mathrm{fx}_{2 \mathrm{n}+1}\right), \mathrm{d}(\mathrm{fz}, \mathrm{Pz}),\right. \\
& \left.\mathrm{d}\left(\mathrm{fx}_{2 \mathrm{n}+1}, \mathrm{Qx}_{2 \mathrm{n}+1}\right),\left[\mathrm{d}\left(\mathrm{fz}, \mathrm{Qx}_{2 \mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{fx}_{2 \mathrm{n}+1}, \mathrm{Pz}\right)\right] / 2\right\} \\
& \leq \mathrm{q} \cdot \mathrm{max}\left\{\mathrm{~d}\left(\mathrm{fz}, \mathrm{fx}_{2 \mathrm{n}+1}\right), \mathrm{d}(\mathrm{fz}, \mathrm{Pz}),\right. \\
& \left.\mathrm{d}\left(\mathrm{fx}_{2 \mathrm{n}+1}, \mathrm{fx}_{2 \mathrm{n}+2}\right),\left[\mathrm{d}\left(\mathrm{fz}, \mathrm{fx}_{2 \mathrm{n}+2}\right)+\mathrm{d}\left(\mathrm{fx}_{2 \mathrm{n}+1}, \mathrm{Pz}\right)\right] / 2\right\} .
\end{aligned}
$$

Making $\mathrm{n} \rightarrow \infty, \mathrm{d}(\mathrm{fz}, \mathrm{Pz}) \leq \mathrm{qd}(\mathrm{fz}, \mathrm{Pz})$.

This gives $\mathrm{fz} \in \mathrm{Pz}$, since $0<\mathrm{q}<1$ and Pz is closed. Similarly $\mathrm{fz} \in \mathrm{Qz}$. Thus $\mathrm{fz} \in$ $\mathrm{Pz} \cap \mathrm{Qz}$.

The above argument applies to the case when $\mathrm{P}(\mathrm{Y})$ or $\mathrm{Q}(\mathrm{Y})$ is a complete subspace of X, since $P(Y)$ and $Q(Y)$ are contained in $f(Y)$. This proves (I) and (II). The proof of the last part is analogous to that of Theorem 3.1 (III).

Corollary 3.1. Let $P: Y \rightarrow C L(X)$ and $f: Y \rightarrow X$ such that $P(Y) \subseteq f(Y)$ and $(S K)(c f$. Th. 1.1) holds for all $x, y \in Y$. If one of $P(Y)$ or $f(Y)$ is a complete subspace of X, then $f x \in P x$ has a solution. Indeed, for any $x_{0} \in Y$, there exists a sequence $\left\{x_{n}\right\}$ in Y such that conclusions (I), (II) of Theorem 3.1 and the conclusion (III) of Theorem 3.3 hold.

Proof. It comes from Theorem 3.3 when $\mathrm{P}=\mathrm{Q}$.

We remark that Corollary 3.1 is an extension of Theorem 1.1 to b-metric spaces. Certain results of Czerwik [6, 7] and Singh et al. [32] are particular cases of the above corollary.

4. Fixed Point Theorems

We apply coincidence theorems of the previous section to study solutions of $x=f x \in$ $P x, x \in P x, x=f x \in P x \cap Q x$ and $x \in P x \cap Q x$, for $P, Q: X \rightarrow C L(X)$ and $f: X$ $\rightarrow \mathrm{X}$.

Theorem 4.1. Let all the hypotheses of Theorem 3.1 be satisfied with $Y=X$. If f and P are (IT)-commuting just at a coincidence point z (say) of f and P, and if u $=f z$ is fixed point of f, then u is a common fixed point of f and P.

Proof. It comes from Theorem 3.1 that there exist points $\mathrm{z}, \mathrm{u} \in \mathrm{X}$ such that

$$
\mathrm{u}=\mathrm{fz} \in \mathrm{Pz} .
$$

If u is a fixed point of $u=f u$ and f, P are (IT)-commuting at z then

$$
\mathrm{u}=\mathrm{fu}=\mathrm{ffz} \in \mathrm{fPz} \subseteq \mathrm{Pfz}=\mathrm{Pu} .
$$

This completes the proof.
Theorem 4.2. Let all the hypotheses of Theorem 3.2 be satisfied with $Y=X$. If f is (IT)-commuting with each of P and Q at their common coincidence point z, and if $u=f z$ is fixed point of f, then f, P and Q have a common fixed point, i.e.,

$$
u=f u \in P u \cap Q u .
$$

Proof. It comes from Theorem 3.2 that there exist $z, u \in X$ such that
$u=f z \in P z$ and $u=f z \in Q z$. Since $u=f u$, the (IT)-commutativity of f and P implies that
$u=f u=f f z \in f P z \subseteq P f z=P u$. Similarly $u=f u \in Q u$. So $u=f u \in P u \cap Q u$. This completes the proof.

Theorem 4.3. Let all the hypotheses of Theorem 3.3 be satisfied with $Y=X$. Iff is (IT)-commuting with each of P and Q at one of their common coincidences z (say), and if $u=f z$ is a fixed point of f, then f, P and Q have a common fixed point, i.e., $u=f u \in P u \cap Q u$.

Proof. It comes from Theorem 3.3 that there exist points $\mathrm{z}, \mathrm{u} \in \mathrm{X}$ such that $\mathrm{u}=\mathrm{fz} \in \mathrm{Pz} \cap \mathrm{Qz}$. The rest part of the proof is now evident.

Now we derive some corollaries.
Corollary 4.1. Let (X, d) be a complete b-metric space and $P, Q: X \rightarrow C L(X)$ such that $H(P x, Q y) \leq q \cdot \max \{d(x, y), d(x, P x), d(y, Q y),[d(x, Q y)+d(y, P x)] / 2\}$ for all x, $y \in X$, where $0<q, k<1$, sq $q^{l-k}<1$ with $\alpha s<1$. Then the functional inclusion $x \in P x \cap Q x$ has a solution.

Proof. It comes from Theorem 3.3 with $\mathrm{Y}=\mathrm{X}$ when $\mathrm{f}=$ is the identity map on X .
Corollary 4.2. Let (X, d) be a complete b-metric space and $P, Q: X \rightarrow C L(X)$ such that

$$
\begin{aligned}
& H^{2}(P x, Q y) \leq q \cdot \max \left\{d^{2}(x, y) \cdot d(x, y) \cdot d(x, P x), d(x, y) \cdot d(y, Q y),\right. \\
& d(x, y) \cdot[d(x, Q y)+d(y, P x)] / 2, \\
& d(x, P x) \cdot d(y, Q y), d(x, P x) \cdot[d(x, Q y)+d(y, P x)] / 2, \\
&d(y, Q y) \cdot[d(x, Q y)+d(y, P x)] / 2, d(x, Q y) \cdot d(y, P x)\},
\end{aligned}
$$

where $0<q, k<1$, sq $q^{1-k}<1$ with $\beta s<1$. Then $x \in P x \cap Q x$ has a solution.
Proof. It comes from Theorem 3.2 with $\mathrm{Y}=\mathrm{X}$ when $\mathrm{f}=$ is the identity map on X .

The following result is an extension of the main result of Ciric [3] and Theorem 1.1 with f the identity map on X .

Corollary 4.3. Let (X, d) be a complete b-metric space and $P: X \rightarrow C L(X)$ such that

$$
H(P x, P y) \leq q \cdot \max \{d(x, y), d(x, P x), d(y, P y),[d(x, P y)+d(y, P x)] / 2\} \quad(C-1)
$$

for all $x, y \in X$, where $0<q, k<1, s q^{1-k}<1$ with $\alpha s<1$. Then $x \in P x$ has a solution.

Proof. It comes from Corollary 4.1 with $\mathrm{P}=\mathrm{Q}$.
Ciric [3] was the first to study the contraction (C-1) in a metric space. Using a similar condition for a pair of multivalued maps in a metric space, Khan [17] obtained some interesting fixed point theorems in metric spaces. We remark that Corollary 4.3 is an improvement in respect of the statement of a main result of Singh et al. [32, Th. 4.1]. Further, the above corollaries improve and extend several fixed point theorems for multivalued maps in metric and b-metric spaces (see, for instance, [1], [5], [6, 7], [17] and [23]).

The following question merits attention: Does the Corollary 4.3 hold when (C-1) is replaced by

$$
\begin{equation*}
\mathrm{H}(\mathrm{Px}, P y) \leq \mathrm{q} \cdot \max \{\mathrm{~d}(\mathrm{x}, \mathrm{y}), \mathrm{d}(\mathrm{x}, \mathrm{Px}), \mathrm{d}(\mathrm{y}, \mathrm{Py}), \mathrm{d}(\mathrm{x}, \mathrm{Py}), \mathrm{d}(\mathrm{y}, \mathrm{Px})\} . \tag{C-2}
\end{equation*}
$$

We remark that (C-2) is the main contraction condition due to Ciric [4] when X is a metric space and P is a single-valued map on X .

References

[1] Ismat Beg and Akbar Azam, Fixed points of asymptotically regular multivalued mappings, J. Austral. Math. Soc. Ser. A 53 (1992), no. 3, 313 - 326.
[2] R. Bhaskaran and P. V. Subrahmanyam, Common fixed points in metrically convex spaces, J. Math. Phys. Sci. 18(S) (1984), $65-70$.
[3] Ljubomir B. Ciric, Fixed points for generalized multi-valued contractions, Mat. Vesnik. 9(24) (1972), $265-272$.
[4] Ljubomir B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267 - 273.
[5] H. Covitz and S. B. Nadler, Jr., Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970) $5-11$.
[6] Stefan Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis 1 (1993), 5-11.
[7] Stefan Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), no. 2, 263 - 276.
[8] Stefan Czerwik, Krzysztof Dlutek and S. L. Singh, Round-off stability of iteration procedures for operators in b-metric spaces, J. Natur. Phys. Sci. 11 (1997), 87 - 94.
[9] Stefan Czerwik, Krzysztof Dlutek and S. L. Singh, Round-off stability of iteration procedures for set-valued operators in b-metric spaces, J. Natur. Phys. Sci. 15 (2001), no. 1-2, 1 - 8.
[10] Olga Hadzic, A coincidence theorem for multivalued mappings in metric spaces, Studia Univ. Babecs-Bolyai Math. 26 (1981), no. 4, $65-67$.
[11] Shigeru Itoh and Wataru Takahashi, Single-valued mappings, multivalued mappings and fixed-point theorems, J. Math. Anal. Appl. 59 (1977), no. 3, 514 521.
[12] Gerald Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (1998), no. 3, 227 - 238.
[13] Tayyab Kamran, Coincidence and fixed points for hybrid strict contractions, J. Math. Anal. Appl. 299 (2004), no. 1, 235 - 241.
[14] Hideaki Kaneko, Single-valued and multivalued f-contractions, Boll. Un. Mat. Ital. A (6) 4 (1985), no. 1, 29 - 33.
[15] Hideaki Kaneko, A common fixed point of weakly commuting multi-valued mappings, Math. Japon. 33 (1988), no. 5, 741 - 744.
[16] Hideaki Kaneko and Salvatore Sessa, Fixed point theorems for compatible multi-valued and single-valued mappings, Internat. J. Math. Math. Sci. 12 (1989), no. 2, 257 - 262.
[17] M. S. Khan, Common fixed point theorems for multivalued mappings, Pacific J. Math. 95 (1981), no. 2, 337 - 347.
[18] Chitra Kulshrestha, Single-valued mappings, multi-valued mappings and fixed point theorems in metric spaces, Ph.D. Thesis (supervised by Prof. S. L. Singh), Garhwal University, Srinagar, 1983.
[19] Tomasz Kubiak, Two coincidence theorems for contractive type multivalued mappings, Studia Univ. Babecs-Bolyai Math. 30 (1985), 65 - 68.
[20] Yicheng Liu, Jun Wu and Zhixiang Li, Common fixed points of single-valued and multivalued maps, Int. J. Math. Math. Sci. (2005) no. 19, 3045 - 3055.
[21] Zeqing Liu, Fengrong Zhang and Jianfeng Mao, Common fixed points for compatible mappings of type (A), Bull. Malaysian Math. Soc. (2) 22 (1999), no. 1, 67-86.
[22] S. N. Mishra, S. L. Singh and Rekha Talwar, Nonlinear hybrid contractions on Menger and uniform spaces, Indian J. Pure Appl. Math. 25 (1994), no. 10, 1039-1052.
[23] Sam B. Nadler, Jr., Multivalued contraction mappings, Pacific J. Math. 30 (2) (1969), 475 - 488.
[24] S. V. R. Naidu, Fixed point theorems for a broad class of multimaps, Nonlinear Anal. 52 (2003), no. 3, 961 - 969.
[25] S. A. Naimpally, S. L. Singh and J. H. M. Whitfield, Coincidence theorems for hybrid contractions, Math. Nachr. 127 (1986), 177 - 180.
[26] H. K. Pathak, S. M. Kang and Y. J. Cho, Coincidence and fixed point theorems for nonlinear hybrid generalized contractions, Czechoslovak Math. J. 48(123) (1998), no. 2, 341 - 357 .
[27] Valeriu Popa, Coincidence and fixed points theorems for noncontinuous hybrid contractions, Nonlinear Anal. Forum 7 (2002), no. 2, 153 - 158.
[28] B. E. Rhoades, S. L. Singh and Chitra Kulshrestha, Coincidence theorems for some multivalued mappings, Internat. J. Math. Math. Sci. 7 (1984), no. 3, 429 434.
[29] I. A. Rus, Fixed point theorems for multivalued mappings in complete metric spaces, Math. Japon. 20 (1975), $21-24$.
[30] Naseer Shahzad, Coincidence points and R-subweakly commuting multivalued maps, Demonstratio Math. 36 (2003), no. 2, 427 - 431.
[31] S. L. Singh and Ritu Arora, Coincidence and fixed point theorems for hybrid contractions, J. Natur. Phys. Sci. 18 (2004), no. 2, 105 - 116.
[32] S. L. Singh, Charu Bhatnagar, S. N. Mishra, Stability of iterative procedures for multivalued maps in metric spaces, Demonstratio Math. 38 (2005), no. 4, 905 916.
[33] S. L. Singh, K. S. Ha and Y. J. Cho, Coincidence and fixed points of non-linear hybrid contractions, Internat. J. Math. \& Math. Sci. 12 (2) (1989), 247 - 256.
[34] S. L. Singh and Amal M. Hashim, New coincidences and fixed points of reciprocally continuous and compatible hybrid maps, J. Natur. Phys. Sci. 18 (2004), no. 2, 97 - 104.
[35] S. L. Singh and Chitra Kulshrestha, Coincidence theorems in metric spaces, Indian J. Phy. Natur. Sci. 2B (1982), $19-22$.
[36] S. L. Singh, A. Kumar and Y. J. Cho, Fixed points of Meir-Keeler type hybrid contractions, Panamer. Math. J. 16 (2006), no. 4, $35-54$.
[37] S. L. Singh and S. N. Mishra, Nonlinear hybrid contractions, J. Natur. Phys. Sci. 5/8 (1991/94), 191 - 206.
[38] S. L. Singh and S. N. Mishra, On general hybrid contractions, J. Austral. Math. Soc. Ser. A 66 (1999), no. 2, 244 - 254.
[39] S. L. Singh and S. N. Mishra, Coincidences and fixed points of nonself hybrid contractions, J. Math. Anal. Appl. 256 (2001), no. 2, 486 - 497.
[40] S. L. Singh and S. N. Mishra, Coincidences and fixed points of reciprocally continuous and compatible hybrid maps, Int. J. Math. Math. Sci. 30 (2002), no. 10, $627-635$.
[41] Dejun Tan, Zeqing Liu and Jong Kyu Kim, Common fixed points for compatible mappings of type (P) in 2-metric spaces, Nonlinear Funct. Anal. Appl. 8 (2003), no. 2, 215-232.

[^0]: * 2000 Mathematics Subject Classification: 54H25; 54C60; 47H10.
 ${ }^{\dagger}$ Email: vedicmri@gmail.com
 +Email: stefan.czerwik@polsl.pl
 ${ }^{\text {§ Email: krzysztof.krol@polsl.pl }}$
 ${ }^{* *}$ Email: abha_singh17@rediffmail.com

