Stability of Generalized Lie (σ, τ)-Derivations*

Maryam Amyari ${ }^{\dagger}$
Department of Mathematics, Islamic Azad University-Mashhad Branch, P.O.Box 91735-413, Mashhad 91735, Iran

Received May 27, 2008, Accepted May 27, 2008.

Abstract

Let A be a normed algebra, let σ and τ be two mappings on A and let M be an A-bimodule. A linear mapping $L: A \rightarrow M$ is called a generalized Lie (σ, τ)-derivation if $$
L([x, y])=[L(x), y]_{\sigma, \tau}-[L(y), x]_{\sigma, \tau}+\sigma(x) m \tau(y)-\sigma(y) m \tau(x)
$$ for some $m \in M$ and all $x, y \in A$, where $[x, y]_{\sigma, \tau}$ is $x \tau(y)-\sigma(y) x$ and $[x, y]$ is the commutator $x y-y x$ of elements x, y. If $m=0$, then L is Lie (σ, τ)-derivation. In this paper we investigate the generalized Hyers-Ulam-Rassias stability of generalized Lie (σ, τ)-derivations. We also prove that if the center of A is zero, then every "approximate Lie (I, I)-derivation" is indeed a Lie (I, I)-derivation.

Keywords and Phrases: Generalized Hyers-Ulam-Rassias stability, Normed algebra, Lie (σ, τ)-derivation, Generalized Lie (σ, τ)-derivation, Superstability.

1. Introduction

The stability of functional equations was started in 1940 with a problem raised by S. M. Ulam [14]. In 1941 Hyers affirmatively solved the problem of S. M.

[^0]Ulam in the context of Banach spaces. In 1950 T. Aoki [1] extended the Hyers' theorem. In 1978, Th. M. Rassias [11] formulated and proved the following Theorem:

Assume that E_{1} and E_{2} are real normed spaces with E_{2} complete, f : $E_{1} \rightarrow E_{2}$ is a mapping such that for each fixed $x \in E_{1}$ the mapping $t \mapsto$ $f(t x)$ is continuous on \mathbb{R}, and let there exist $\varepsilon \geq 0$ and $p \in[0,1)$ such that $\|f(x+y)-f(x)-f(y)\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ for all $x, y \in E_{1}$. Then there exists a unique linear mapping $T: E_{1} \rightarrow E_{2}$ such that $\|f(x)-T(x)\| \leq \varepsilon\|x\|^{p} /\left(1-2^{p-1}\right)$ for all $x \in E_{1}$.

The inequality $\|f(x+y)-f(x)-f(y)\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ has provided extensive influence in the development of what we now call Hyers-Ulam-Rassias stability of functional equations $[3,5,8,12,13]$. In 1994, a generalization of Rassias' theorem was obtained by Găvruta [4], in which he replaced the bound $\varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ by a general control function.

Let A be a normed algebra, σ and τ two mappings on A and let M be an A-bimodule. A linear mapping $L: A \rightarrow M$ is called a Lie (σ, τ)-derivation if

$$
L([x, y])=[L(x), y]_{\sigma, \tau}-[L(y), x]_{\sigma, \tau}
$$

for all $x, y \in A$, where $[x, y]_{\sigma, \tau}$ is $x \tau(y)-\sigma(y) x$ and $[x, y]$ is the commutator $x y-y x$ of elements x, y. Following [2] A linear mapping $L: A \rightarrow M$ is called a generalized Lie (σ, τ)-derivation if

$$
L([x, y])=[L(x), y]_{\sigma, \tau}-[L(y), x]_{\sigma, \tau}+\sigma(x) m \tau(y)-\sigma(y) m \tau(x)
$$

for some $m \in M$ and all $x, y \in A$.
Also $Z(A)=\{z \in A \mid z x=x z \quad \forall x \in A\}$ denotes the center of algebra A. Throughout in this paper, A denotes a (not necessary unital) normed algebra and M is a Banach A-bimodule. We investigate the generalized Hyers-Ulam-Rassias stability of generalized Lie (σ, τ)-derivations by using some ideas of $[6,7,9,10]$. We also prove that if the center of A is zero, then every "approximate Lie (I, I)-derivation" is indeed a Lie (I, I)-derivation.

2. Stability of Lie (σ, τ)-Derivations

In this section our aim is to establish the Hyers-Ulam-Rassias stability of Lie (σ, τ)-derivations.

Theorem 2.1. Suppose $f: A \rightarrow M$ is a mapping with $f(0)=0$ for which there exist mappings $g, h: A \rightarrow A$ with $g(0)=h(0)=0$ and a function $\varphi: A \times A \times A \times A \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\widetilde{\varphi}(x, y, z, w)=\frac{1}{2} \sum_{n=0}^{\infty} 2^{-n} \varphi\left(2^{n} x, 2^{n} y, 2^{n} z, 2^{n} w\right)<\infty \tag{2.1}\\
\leq \quad \varphi f(\lambda x, y, z, w) \\
\|g(\lambda x+\lambda y)-\lambda g(x)-\lambda g(y)\| \leq \varphi(x, y, 0,0) \tag{2.2}\\
\|h(\lambda x+\lambda y)-\lambda h(x)-\lambda h(y)\| \leq \varphi(x, y, 0,0) \tag{2.3}
\end{gather*}
$$

for all $\lambda \in \mathbb{T}=\{\lambda \in \mathbb{C}:|\lambda|=1\}$ and for all $x, y \in A$. Then there exist unique linear mappings σ and τ from A to A satisfying $\|g(x)-\sigma(x)\| \leq \widetilde{\varphi}(x, x, 0,0)$ and $\|h(x)-\tau(x)\| \leq \widetilde{\varphi}(x, x, 0,0)$, and there exists a unique Lie (σ, τ)-derivation $L: A \rightarrow M$ such that

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \widetilde{\varphi}(x, x, 0,0) \tag{2.5}
\end{equation*}
$$

for all $x \in A$.
Proof. Put $\lambda=1$ and $z=w=0$ in (2.2) to obtain

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \varphi(x, y, 0,0) \quad(x, y \in A) \tag{2.6}
\end{equation*}
$$

Fix $x \in A$. Replace y by x in (2.6) to get

$$
\begin{equation*}
\|f(2 x)-2 f(x)\| \leq \varphi(x, x, 0,0) \tag{2.7}
\end{equation*}
$$

One can use the induction to show that

$$
\begin{equation*}
\left\|\frac{f\left(2^{p} x\right)}{2^{p}}-\frac{f\left(2^{q} x\right)}{2^{q}}\right\| \leq \frac{1}{2} \sum_{k=q}^{p-1} \frac{1}{2^{k}} \varphi\left(2^{k} x, 2^{k} x, 0,0\right) \tag{2.8}
\end{equation*}
$$

for all $x \in A$, and all $p>q \geq 0$. It follows
from the convergence of series (2.1) that the sequence $\left\{\frac{f\left(2^{n} x\right)}{2^{n}}\right\}$ is Cauchy. By the completeness of M, this sequence is convergent. Set

$$
\begin{equation*}
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}} \tag{2.9}
\end{equation*}
$$

Putting $z=w=0$ and replacing x, y by $2^{n} x$ and $2^{n} y$ in (2.2) respectively, and divide the both sides of the inequality by 2^{n} we get

$$
\left\|2^{-n} f\left(2^{n}(\lambda x+\lambda y)\right)-2^{-n} \lambda f\left(2^{n} x\right)-2^{-n} \lambda f\left(2^{n} y\right)\right\| \leq \frac{1}{2^{n}} \varphi\left(2^{n} x, 2^{n} y, 0,0\right)
$$

Passing to the limit as $n \rightarrow \infty$ we obtain $L(\lambda x+\lambda y)=\lambda L(x)+\lambda L(y)$.
Put $q=0$ in (2.8) to get

$$
\begin{equation*}
\left\|\frac{f\left(2^{p} x\right)}{2^{p}}-f(x)\right\| \leq \frac{1}{2} \sum_{k=0}^{p-1} \frac{1}{2^{k}} \varphi\left(2^{k} x, 2^{k} x, 0,0\right) \tag{2.10}
\end{equation*}
$$

for all $x \in A$.
Taking the limit as $p \rightarrow \infty$ we infer that

$$
\|f(x)-L(x)\| \leq \tilde{\varphi}(x, x, 0,0)
$$

for all $x \in A$.
Next, let $\gamma \in \mathbb{C}(\gamma \neq 0)$ and let N be a positive integer number greater than $|\gamma|$. It is shown that there exist two numbers $\theta_{1}, \theta_{2} \in \mathbb{T}$ such that $2 \frac{\gamma}{N}=\theta_{1}+\theta_{2}$. Since L is additive we have $L\left(\frac{1}{2} x\right)=\frac{1}{2} L(x)$ for all $x \in A$. Hence

$$
\begin{aligned}
L(\gamma x) & =L\left(\frac{N}{2} \cdot 2 \cdot \frac{\gamma}{N} x\right)=N L\left(\frac{1}{2} \cdot 2 \cdot \frac{\gamma}{N} x\right)=\frac{N}{2} L\left(2 \cdot \frac{\gamma}{N} x\right) \\
& =\frac{N}{2} L\left(\theta_{1} x+\theta_{2} x\right)=\frac{N}{2}\left(L\left(\theta_{1} x\right)+L\left(\theta_{2} x\right)\right) \\
& =\frac{N}{2}\left(\theta_{1}+\theta_{2}\right) L(x)=\left(\frac{N}{2} \cdot 2 \cdot \frac{\gamma}{N}\right) L(x)=\gamma L(x)
\end{aligned}
$$

for all $x \in A$. Thus L is linear.
It is known that additive mapping L satisfying (2.5) is unique [4].

Similarly one can use (2.3) and (2.4) to show that there exist unique linear mappings σ and τ defined by $\lim _{n \rightarrow \infty} \frac{g\left(2^{n} x\right)}{2^{n}}$ and $\lim _{n \rightarrow \infty} \frac{h\left(2^{n} x\right)}{2^{n}}$, respectively.

Putting $x=y=0$ and replacing z, w by $2^{n} z$ and $2^{n} w$ in (2.2) respectively, we obtain

$$
\left\|f\left(\left[2^{n} z, 2^{n} w\right]\right)-\left[f\left(2^{n} z\right), 2^{n} w\right]_{g, h}+\left[f\left(2^{n} w\right), 2^{n} z\right]_{g, h}\right\| \leq \varphi\left(0,0,2^{n} z, 2^{n} w\right)
$$

then
$\frac{1}{2^{2 n}}\left\|f\left(\left[2^{n} z, 2^{n} w\right]\right)-\left[f\left(2^{n} z\right), 2^{n} w\right]_{g, h}+\left[f\left(2^{n} w\right), 2^{n} z\right]_{g, h}\right\| \leq \frac{1}{2^{n}} \varphi\left(0,0,2^{n} z, 2^{n} w\right)$
for all $z, w \in A$, whence

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{2^{2 n}}\left\|f\left(\left[2^{n} z, 2^{n} w\right]\right)-\left[f\left(2^{n} z\right), 2^{n} w\right]_{g, h}+\left[f\left(2^{n} w\right), 2^{n} z\right]_{g, h}\right\| \\
\leq & \lim _{n \rightarrow \infty} \frac{1}{2^{n}} \varphi\left(0,0,2^{n} z, 2^{n} w\right) \\
= & 0
\end{aligned}
$$

Therefore

$$
\begin{aligned}
L([z, w])= & =\lim _{n \rightarrow \infty} \frac{f\left(2^{2 n}[z, w]\right)}{2^{2 n}} \\
& =\lim _{n \rightarrow \infty} \frac{f\left(\left[2^{n} z, 2^{n} w\right]\right)}{2^{2 n}} \\
& =\lim _{n \rightarrow \infty}\left(\frac{\left[f\left(2^{n} z\right), 2^{n} w\right]_{g, h}-\left[f\left(2^{n} w\right), 2^{n} z\right]_{g, h}}{2^{2 n}}\right. \\
& =\lim _{n \rightarrow \infty}\left(\frac{f\left(2^{n} z\right) h\left(2^{n} w\right)-g\left(2^{n} w\right) f\left(2^{n} z\right)-f\left(2^{n} w\right) h\left(2^{n} z\right)+g\left(2^{n} z\right) f\left(2^{n} w\right)}{2^{2 n}}\right) \\
& =(L(z) \tau(w)-\sigma(w) L(z))-(L(w) \tau(z)-\sigma(z) L(w)) \\
& =[L(z), w]_{\sigma, \tau}-[L(w), z]_{\sigma, \tau}
\end{aligned}
$$

for each $z, w \in A$. Hence the linear mapping L is a Lie (σ, τ)-derivation.
Remark 2.2. In the previous theorem if g and h satisfy the following

$$
\begin{align*}
& \|g(x y)-g(x) g(y)\| \leq \varphi(x, y) \tag{2.11}\\
& \|h(x y)-h(x) h(y)\| \leq \varphi(x, y) \tag{2.12}
\end{align*}
$$

then the linear mappings σ and τ on A shall be homomorphisms.

Corollary 2.2. Suppose $f: A \rightarrow M$ is a mapping with $f(0)=0$ for which there exist mappings $g, h: A \rightarrow A$ with $g(0)=h(0)=0$ and there exits $\beta \geq 0$ and $p \in[0,1)$ such that

$$
\begin{gathered}
\left\|f(\lambda x+\lambda y+[z, w])-\lambda f(x)-\lambda f(y)-[f(z), w]_{g, h}+[f(w), z]_{g, h}\right\| \\
\leq \beta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right) \\
\|g(\lambda x+\lambda y)-\lambda g(x)-\lambda g(y)\| \leq \beta\left(\|x\|^{p}+\|y\|^{p}\right) \\
\\
\|h(\lambda x+\lambda y)-\lambda h(x)-\lambda h(y)\| \leq \beta\left(\|x\|^{p}+\|y\|^{p}\right)
\end{gathered}
$$

for all $\lambda \in \mathbb{T}=\{\lambda \in \mathbb{C}:|\lambda|=1\}$ and for all $x, y \in A$. Then there exist unique linear mappings σ and τ from A to A satisfying $\|g(x)-\sigma(x)\| \leq \frac{\beta\|x\|^{p}}{1-2^{p-1}}$ and $\|h(x)-\tau(x)\| \leq \frac{\beta\|x\|^{p}}{1-2^{p-1}}$, and there exists a unique Lie (σ, τ)-derivation $L: A \rightarrow M$ such that

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \frac{\beta\|x\|^{p}}{1-2^{p-1}} \tag{2.13}
\end{equation*}
$$

for all $x \in A$.
Proof. Put $\varphi(x, y, z, w)=\beta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right)$ in Theorem 2.1.
In the next result we shall show that under certain assumptions an "approximate Lie (σ, τ)-derivations" is indeed a Lie (σ, τ)-derivations. This phenomenon is called the superstability of Lie (σ, τ)-derivations.

Corollary 2.3. Suppose $f: A \rightarrow M$ is a mapping with $f(0)=0$ and there exist $\beta \geq 0$ and $p \in[0,1)$ such that
$\left\|f(\lambda x+\lambda y+[z, w])-\lambda f(x)-\lambda f(y)-[f(z), w]_{I, I}+[f(w), z]_{I, I}\right\| \leq \beta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right)$
for all $\lambda \in \mathbb{T}=\{\lambda \in \mathbb{C}:|\lambda|=1\}$ and for all $x, y, z, w \in A$. If $Z(A)=\{0\}$, then f a Lie (I, I)-derivation.

Proof. Put $g=h=I$ in Corollary 2.2, then there is a unique Lie (I, I) derivation $L: A \rightarrow M$ such that

$$
\begin{equation*}
\|L(x)-f(x)\| \leq \frac{\beta\|x\|^{p}}{1-2^{p-1}} \tag{2.14}
\end{equation*}
$$

for all $x \in A$.
We will show that $L(x)=f(x)$ for all $x \in A$.
Let m, n be two nonnegative integers and let $x, y \in A$. Then

$$
\begin{aligned}
& \left\|2^{n}\left(\left[x, 2^{m} f(y)\right]-\left[x, f\left(2^{m} y\right)\right]\right)\right\| \\
= & \left\|\left[2^{n} x, 2^{m} f(y)\right]-\left[2^{n} x, f\left(2^{m} y\right)\right]\right\| \\
\leq & \left\|f\left[2^{n} x, 2^{m} y\right]-\left[f\left(2^{n} x\right), 2^{m} y\right]-\left[2^{n} x, f\left(2^{m} y\right)\right]\right\| \\
& +\left\|f\left[2^{n} x, 2^{m} y\right]-\left[f\left(2^{n} x\right), 2^{m} y\right]-\left[2^{n} x, 2^{m} f(y)\right]\right\| \\
\leq & \beta\left(\left\|2^{n} x\right\|^{p}+\left\|2^{m} y\right\|^{p}\right)+\left\|L\left[2^{n} x, 2^{m} y\right]-f\left[2^{n} x, 2^{m} y\right]\right\| \quad \text { (by Corollary 2.2) } \\
& +\left\|L\left[2^{n} x, 2^{m} y\right]-\left[f\left(2^{n} x\right), 2^{m} y\right]-\left[2^{n} x, 2^{m} f(y)\right]\right\| \\
\leq & \beta\left(\left\|2^{n} x\right\|^{p}+\left\|2^{m} y\right\|^{p}\right)+\beta \frac{\left\|\left[2^{n} x, 2^{m} y\right]\right\|^{p}}{1-2^{p-1}} \quad \text { (by Corollary 2.2) } \\
& +2^{m} \| L\left[2^{n} x, y\right]-\left[f\left(2^{n} x\right), y\right]-\left[2^{n} x, f(y) \| \quad(\text { by linearity } L)\right. \\
\leq & \beta\left(\left\|2^{n} x\right\|^{p}+\left\|2^{m} y\right\|^{p}\right)+\beta \frac{\left\|\left[2^{n} x, 2^{m} y\right]\right\|^{p}}{1-2^{p-1}}+2^{m}\left(\left\|L\left(2^{n} x, y\right]-f\left[2^{n} x, y\right]\right\|\right. \\
& \left.+\left\|f\left[2^{n} x, y\right]-\left[f\left(2^{n} x\right), y\right]-\left[2^{n} x, f(y)\right]\right\|\right) \\
\leq & \beta\left(\left\|2^{n} x\right\|^{p}+\left\|2^{m} y\right\|^{p}\right)+\beta \frac{\left\|\left[2^{n} x, 2^{m} y\right]\right\|^{p}}{1-2^{p-1}} \\
& +2^{m}\left(\frac{\beta\left(\left\|\left[2^{n} x, y\right]\right\|^{p}\right)}{1-2^{p-1}}+\beta\left(\left\|2^{n} x\right\|^{p}+\|y\|^{p}\right) .\right.
\end{aligned}
$$

Fix m, and divide the both sides of the last inequality by 2^{n} and let n tends to infinity to obtain $\left\|\left[x, 2^{m} f(y)\right]-\left[x, f\left(2^{m} y\right)\right]\right\| \leq 0$ for all m and all $x, y \in A$. Hence by continuty norm and commutator we have $\left\|\left[x, \frac{f\left(2^{m} y\right)}{2^{m}}-f(y)\right]\right\|=0$ for all m and for all $x, y \in A$. Letting m tends to infinity we get

$$
[x, L(y)-f(y)]=0 \quad(x, y \in A)
$$

Hence $L(y)-f(y) \in Z(A)=\{0\}$ and so $L(y)=f(y)$ for all $y \in A$. Thus f is a Lie (I, I)-derivation.

3. Generalized Lie (σ, τ)-Derivation

In this section we investigate the Hyers-Ulam-Rassias stability of generalized Lie (σ, τ)-derivation.

Theorem 3.1. Suppose $f: A \rightarrow M$ is a mapping with $f(0)=0$ for which there exist mappings $g, h: A \rightarrow A$ with $g(0)=h(0)=0$ and a function $\varphi: A \times A \times A \times A \rightarrow[0, \infty)$ such that

$$
\begin{align*}
& \widetilde{\varphi}(x, y, z, w)=\frac{1}{2} \sum_{n=0}^{\infty} 2^{n} \varphi\left(2^{-n} x, 2^{-n} y, 2^{-n} z, 2^{-n} w\right)<\infty \tag{3.1}\\
& \lim _{n \rightarrow \infty} 2^{2 n} \varphi\left(2^{-n} x, 2^{-n} y, 2^{-n} z, 2^{-n} w\right)=0 \\
& \| f(\lambda x+\lambda y+[z, w])-\lambda f(x)-\lambda f(y)-[f(z), w]_{g, h}+[f(w), z]_{g, h} \\
& +g(z) m h(w)-g(w) \operatorname{mh}(z) \| \leq \varphi(x, y, z, w) \tag{3.2}\\
& \|g(\lambda x+\lambda y)-\lambda g(x)-\lambda g(y)\| \leq \varphi(x, y, 0,0) \tag{3.3}\\
& \|h(\lambda x+\lambda y)-\lambda h(x)-\lambda h(y)\| \leq \varphi(x, y, 0,0) \tag{3.4}
\end{align*}
$$

for some $m \in M$ and for all $\lambda \in \mathbb{T}=\{\lambda \in \mathbb{C}:|\lambda|=1\}$ and all $x, y, z, w \in$ A. Then there exist unique linear mappings σ and τ from A to A satisfying $\|g(x)-\sigma(x)\| \leq \widetilde{\varphi}(x, x, 0,0)$ and $\|h(x)-\tau(x)\| \leq \widetilde{\varphi}(x, x, 0,0)$, and there exists a unique generalized Lie (σ, τ)-derivation $L: A \rightarrow M$ such that

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \widetilde{\varphi}(x, x, 0,0) \tag{3.5}
\end{equation*}
$$

for all $x \in A$.
Proof. Put $\lambda=1$ and $z=w=0$ in (3.2). Fix $x \in A$. Replace both y and x by $x / 2$ in (3.2) to get

$$
\begin{equation*}
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\| \leq \varphi\left(\frac{x}{2}, \frac{x}{2}, 0,0\right) \tag{3.6}
\end{equation*}
$$

Using the same method as in the proof of Theorem 2.1 one can show that there is a unique linear mapping

$$
\begin{equation*}
L(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right) \tag{3.7}
\end{equation*}
$$

and there exist unique linear mappings σ and τ defined by $\lim _{n \rightarrow \infty} 2^{n} g\left(\frac{x}{2^{n}}\right)$ and $\lim _{n \rightarrow \infty} 2^{n} h\left(\frac{x}{2^{n}}\right)$, respectively, for all $x \in A$.

Putting $x=y=0$, and replacing z, w by $2^{-n} z$ and $2^{-n} w$ in (3.2), respectively, we have

$$
\begin{aligned}
& \| f\left(\left[2^{-n} z, 2^{-n} w\right]\right)-\left[f\left(2^{-n} z\right), 2^{-n} w\right]_{g, h}+\left[f\left(2^{-n} w\right), 2^{-n} z\right]_{g, h} \\
& +g\left(2^{-n} z\right) m h\left(2^{-n} w\right)-g\left(2^{-n} w\right) m h\left(2^{-n} z\right) \| \\
\leq & \varphi\left(0,0,2^{-n} z, 2^{-n} w\right) \|
\end{aligned}
$$

whence

$$
\begin{aligned}
& 2^{2 n} \| f\left(\left[2^{-n} z, 2^{-n} w\right]\right)-\left[f\left(2^{-n} z\right), 2^{-n} w\right]_{g, h}+\left[f\left(2^{-n} w\right), 2^{-n} z\right]_{g, h} \\
& +g\left(2^{-n} z\right) m h\left(2^{-n} w\right)-g\left(2^{-n} w\right) m h\left(2^{-n} z\right) \| \\
\leq & 2^{2 n} \varphi\left(0,0,2^{-n} z, 2^{-n} w\right)
\end{aligned}
$$

for all $z, w \in A$. Hence

$$
\begin{aligned}
L([z, w]) & =\lim _{n \rightarrow \infty} 2^{2 n} f\left(\frac{[z, w]}{2^{2 n}}\right) \\
& =\lim _{n \rightarrow \infty} 2^{2 n} f\left(\left[2^{-n} z, 2^{-n} w\right]\right) \\
& =\lim _{n \rightarrow \infty} 2^{2 n}\left[f\left(2^{-n} z\right), 2^{-n} w\right]_{g, h}-\left[f\left(2^{-n} w\right), 2^{-n} z\right]_{g, h} \\
& +\left(g\left(2^{-n} z\right) m h\left(2^{-n} w\right)-g\left(2^{-n} w\right) m h\left(2^{-n} z\right)\right) \\
& =[L(z), w]_{\sigma, \tau}-[L(w), z]_{\sigma, \tau}+\sigma(z) m \tau(w)-\sigma(w) m \tau(z)
\end{aligned}
$$

for all $z, w \in A$ and $m \in M$.
Corollary 3.2. Suppose $f: A \rightarrow M$ is a mapping with $f(0)=0$ for which there exist mappings $g, h: A \rightarrow A$ with $g(0)=h(0)=0$ and there exist $\beta \geq 0$ and $p>1$ such that

$$
\begin{align*}
& \| f(\lambda x+\lambda y+[z, w])-\lambda f(x)-\lambda f(y)-[f(z), w]_{g, h}+[f(w), z]_{g, h} \\
& +g(z) \operatorname{mh}(w)-g(w) \operatorname{mh}(z) \| \leq\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right) \tag{3.8}\\
& \quad\|g(\lambda x+\lambda y)-\lambda g(x)-\lambda g(y)\| \leq \beta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{3.9}\\
& \quad\|h(\lambda x+\lambda y)-\lambda h(x)-\lambda h(y)\| \leq \beta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{3.10}
\end{align*}
$$

for some $m \in M$ and for all $\lambda \in \mathbb{T}=\{\lambda \in \mathbb{C}:|\lambda|=1\}$ and all $x, y, z, w \in$ A. Then there exist unique linear mappings σ and τ from A to A satisfying
$\|g(x)-\sigma(x)\| \leq \frac{\beta\|x\|^{p}}{1-2^{1-p}}$ and $\|h(x)-\tau(x)\| \leq \frac{\beta\|x\|^{p}}{1-2^{1-p}}$, and there exists a unique generalized Lie (σ, τ)-derivation $L: A \rightarrow M$ such that

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \frac{\beta\|x\|^{p}}{1-2^{1-p}} \tag{3.11}
\end{equation*}
$$

for all $x \in A$.
Proof. Put $\varphi(x, y, z, w)=\beta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right)$ in Theorem 3.1.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950) 64-66.
[2] N. Argac and E. Albas, On generalized of (σ, τ)-derivations, Siberian Math. Journal, 43 (2002), 977-984.
[3] S. Czerwik (ed.), Stability of Functional Equations of Ulam-HyersRassias Type, Hadronic Press, 2003.
[4] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431436.
[5] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic press, Palm Harbor, Florida, 2001.
[6] M. S. Moslehian, Hyers-Ulam-Rassias stability of generalized derivations, Internat J. Math. Math. Sci., 2006 (2006), 93942, 1-8.
[7] M. S. Moslehian, Almost derivations on C^{*}-ternary rings, Bull. Belg. Math. Soc., 14 (2007), 135-142.
[8] M. S. Moslehian, Ternary derivations stability and physical aspects, Acta Applicandae Math., 100 (2008), 187-199.
[9] C. Park, Lie *-homomorphisms between Lie C^{*}-algebras and Lie *derivations on Lie C^{*}-algebras, J. Math. Anal. Appl., 293 (2004), 419434.
[10] C. Park, An. Jong Su and Cui. Jianlian, Isomorphisms and derivations in Lie C^{*}-algebras, Abstr. Appl. Anal., 85737 (2007), pp. 14.
[11] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[12] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62 (2000), 23-130.
[13] Th. M. Rassias (ed.), Functional Equations and Inequalities, Kluwer Academic Publishers, Dordrecht, Boston, London, 2000.
[14] S. M. Ulam, Problems in modern mathematics, Chapter VI,Science Editions, Wiley, New York, 1964.

[^0]: *2000 Mathematics Subject Classification. Primary 39B82; Secondary 39B52.
 ${ }^{\dagger}$ E-mail: amyari@mshdiau.ac.ir and maryam_amyari@yahoo.com

