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In this paper, we prove the Hyers-Ulam stability of a special type of
systems of Euler differential equations of first order.
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1. Introduction

Assume that X is a normed space over a scalar field K and that I is an open
interval, where K denotes either R or C. Let a0, a1, . . ., an : I → K be given
continuous functions, let g : I → X be a given continuous function, and let
y : I → X be any n times continuously differentiable function satisfying the
inequality

‖an(t) y(n)(t) + an−1(t) y
(n−1)(t) + · · ·+ a1(t) y

′(t) + a0(t) y(t) + g(t)‖ ≤ ε

for all t ∈ I and for a given ε > 0. If there exists a function y0 : I → X
satisfying

an(t) y(n)(t) + an−1(t) y
(n−1)(t) + · · ·+ a1(t) y

′(t) + a0(t) y(t) + g(t) = 0

and ‖y(t)− y0(t)‖ ≤ K(ε) for any t ∈ I, where K(ε) is an expression of ε with
lim
ε→0

K(ε) = 0, then we say that the above differential equation has the Hyers-

Ulam stability. For more detailed definitions of the Hyers-Ulam stability, we
refer the reader to [2, 3, 4, 7, 9].

Alsina and Ger were the first authors who investigated the Hyers-Ulam
stability of differential equations: They proved in [1] that if a differentiable
function y : I → R satisfies the differential inequality |y′(t) − y(t)| ≤ ε,
where I is an open subinterval of R, then there exists a differentiable function
y0 : I → R satisfying y′0(t) = y0(t) and |y(t)− y0(t)| ≤ 3ε for any t ∈ I.

This result of Alsina and Ger has been generalized by Takahasi, Miura and
Miyajima. They proved in [8] that the Hyers-Ulam stability holds true for the
Banach space valued differential equation y′(t) = λy(t). Miura, Miyajima and
Takahasi [6] investigated the Hyers-Ulam stability of nth order linear differen-
tial equation with complex coefficients. Furthermore, they proved the Hyers-
Ulam stability of linear differential equations of first order, y′(t)+g(t)y(t) = 0,
where g(t) is a continuous function.

Now, suppose we are given a system of first order Euler differential equa-
tions as follows:

ty′1(t) = a11y1(t) + a12y2(t) + · · ·+ a1nyn(t) + b1(t),

ty′2(t) = a21y1(t) + a22y2(t) + · · ·+ a2nyn(t) + b2(t),
...

...
...

...
...

ty′n(t) = an1y1(t) + an2y2(t) + · · ·+ annyn(t) + bn(t).

(1)
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This system may be written in a simple matrix notation

t~y ′(t) = A~y(t) +~b(t)

if we set

~y(t) =


y1(t)
y2(t)

...
yn(t)

 , A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 , ~b(t) =


b1(t)
b2(t)

...
bn(t)

 .

In this paper, we will adopt the idea of [5] and prove the Hyers-Ulam
stability of the system (1) of Euler differential equations of first order. More
precisely, we prove that if a continuously differentiable vector function ~y :
(0,∞)→ Cn satisfies

‖t~y ′(t)−A~y(t)−~b(t)‖n ≤ ε

for all t ∈ (0,∞), where ‖·‖n is a norm on Cn, then there exists a differentiable
vector function ~y0 : (0,∞)→ Cn and a constant K > 0 such that

t~y′0(t) = A~y0(t) +~b(t) and ‖~y(t)− ~y0(t)‖n ≤ Kε

for all t > 0.

2. Main Result

Let (Cn, ‖ ·‖n) be a complex normed space and let Cn×n be a vector space
consisting of all (n × n) complex matrices. We notice that for t ∈ R and
A ∈ Cn×n we use the notation At (instead of tA) for the scalar multiplication
of t and A. We choose a norm ‖·‖n×n on Cn×n which is compatible with ‖·‖n,
i.e., both norms obey

‖AB‖n×n ≤ ‖A‖n×n‖B‖n×n, ‖A~x‖n ≤ ‖A‖n×n‖~x‖n (2)

for all A,B ∈ Cn×n and ~x ∈ Cn.
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Using the notations and assumptions given in the preceding section, re-
cently Jung [5] proved the Hyers-Ulam stability of the system of first order
linear differential equations with constant coefficients.

Theorem 1. Let ~b : R→ Cn and ~y : R→ Cn be a continuous vector function

and a continuously differentiable vector function, respectively. Assume that a

continuous vector function ~v : R→ Cn defined by

~v(t) = ~y ′(t)−A~y(t)−~b(t)

satisfies

‖~v(t)‖n ≤ ε

for all t ∈ R and for some ε > 0. Suppose that there exists a positive number

C such that ∫ ∞
−∞
|t− s|k| [N−1~v(s)]i| ds ≤ k!Cε‖N−1‖n×n

for all t ∈ R, any k ∈ {0, 1, . . . , n} and any i ∈ {1, . . . , n}, where N is a

nonsingular matrix such that N−1AN is a Jordan form matrix and [N−1~v(s)]i

denotes the i-th component of N−1~v(s). Then there exists a differentiable

vector function ~y0 : R→ Cn such that

~y′0(t) = A~y0(t) +~b(t) and ‖~y(t)− ~y0(t)‖n ≤ ε‖N‖n×n‖N−1‖n×n‖B~e ‖n

for all t ∈ R, where ~e = (1, 1, . . . , 1)tr ∈ Cn and B is some matrix constructed
by the eigenvalues of A.

Using the above theorem we can prove the Hyers-Ulam stability of the sys-

tem (1) of first order linear differential equations with constant coefficients.

Theorem 2. Let ~b : R+ → Cn and ~y : R+ → Cn be a continuous vector func-

tion and a continuously differentiable vector function, respectively. Assume

that a continuous vector function ~v : R+ → Cn defined by

~v(t) = t~y ′(t)−A~y(t)−~b(t)
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satisfies

‖~v(t)‖n ≤ ε (3)

for all t > 0 and for some ε > 0. Suppose that there exists a positive number

C such that ∫ ∞
−∞
|t− s|k| [N−1~v(es)]i| ds ≤ k!Cε‖N−1‖n×n (4)

for all t ∈ R, any k ∈ {0, 1, . . . , n} and any i ∈ {1, . . . , n}, where N is a

nonsingular matrix such that N−1AN is a Jordan form matrix and [N−1~v(s)]i

denotes the i-th component of N−1~v(s). Then there exists a differentiable

vector function ~y0 : R+ → Cn such that

t~y′0(t) = A~y0(t) +~b(t) and ‖~y(t)− ~y0(t)‖n ≤ ε‖N‖n×n‖N−1‖n×n‖B~e ‖n

for all t > 0, where ~e = (1, 1, . . . , 1)tr ∈ Cn and B is some matrix constructed
by the eigenvalues of A.

Proof. Let t = eτ and ~z : R→ Cn given by ~z(τ) = ~y(eτ ). Then

~z ′(τ) =
d~z(τ)

dτ
= eτ

d~y

dt
(eτ ) = t~y ′(t)

and
~z ′(τ)−A~z(τ)−~b(eτ ) = t~y ′(t)−A~y(t)−~b(t) = ~v(t) = ~v(eτ )

and from the assumption (3),

‖~v(eτ )‖n = ‖~v(t)‖n ≤ ε

for all τ ∈ R and for some ε > 0.
By assumption, there exists a positive number C such that the inequality

(4) holds for all t ∈ R, any k ∈ {0, 1, . . . , n} and any i ∈ {1, . . . , n}, where
N is a nonsingular matrix such that N−1AN is a Jordan form matrix and
[N−1~v(s)]i denotes the i-th component of N−1~v(s).

Therefore by Theorem 1, there exists a differentiable vector function ~z0 :
R→ Cn such that

~z′0(τ) = A~z0(τ) +~b(eτ )
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with
‖~z(τ)− ~z0(τ)‖n ≤ ε‖N‖n×n‖N−1‖n×n‖B~e ‖n

for all τ ∈ R, where ~e = (1, 1, . . . , 1)tr ∈ Cn.
Then the function ~y0(t) = ~z0(ln t) satisfies

~y′0(t) =
1

t

dz0

dτ
(ln t) =

1

t
[A~z0(ln t) +~b(eln t)]

or
t~y′0(t) = A~y0(t) +~b(t)

with

‖~y(t)− ~y0(t)‖n = ‖~z(ln t)− ~z0(ln t)‖n ≤ ε‖N‖n×n‖N−1‖n×n‖B~e ‖n

for all t > 0, where ~e = (1, 1, . . . , 1)tr ∈ Cn and B is some matrix constructed
by the eigenvalues of A. 2

3. Some Example

Some of the most important matrix norms are induced by p-norms. For 1 ≤
p ≤ ∞, the norm induced by the p-norm,

‖A‖p = sup
~x6=~0

‖A~x‖p
‖~x‖p

(A ∈ Cn×n),

is called the matrix p-norm. For example, we get

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij|, ‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij|.

It is well known that the matrix p-norm, together with the p-norm, satisfies
both conditions in (2).

Example 1. We consider a system of Euler differential equations of first order
in the following form{

ty′1(t) = y1(t) + 2y2(t) + b1(t),

ty′2(t) = 3y1(t) + 2y2(t) + b2(t).
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This system can be written in a matrix notation

t~y ′(t) = A~y(t) +~b(t),

where

~y(t) =

(
y1(t)
y2(t)

)
, A =

(
1 2
3 2

)
, ~b(t) =

(
b1(t)
b2(t)

)
.

Assume that a continuous vector function ~b : (0,∞) → C2 and a continu-
ously differentiable vector function ~y : (0,∞)→ C2 satisfy

‖t~y ′(t)−A~y(t)−~b(t)‖∞ ≤ ε

for all t > 0 and for some ε ≥ 0. Since A has two distinct eigenvalues −1 and
4, we can choose a nonsingular matrix N and a diagonal matrix J

N =

(
1 2
−1 3

)
, J =

(
−1 0
0 4

)
such that J = N−1AN. Furthermore, since d = 2, m1 = m2 = 1 and p11 =
p21 = 1, it follows that

B =

(
1 0

0 1
4

)
.

According to Theorem 2, there exists a differentiable vector function ~y0 :
(0,∞)→ C2 of the form

~y0(t) = eA ln t~k + eA ln t

∫ t

1

e−A ln s~b(s)
ds

s

with
‖~y(t)− ~y0(t)‖∞ ≤ 4ε

for all t > 0, where ~k ∈ C2 is a constant.
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