On the Hyers-Ulam Stability of a System of Euler Differential Equations of First Order *

Soon-Mo Jung[†], Byungbae Kim[‡]

Mathematics Section, College of Science and Technology Hong-Ik University, 339-701 Chochiwon, Korea

and

Themistocles M. Rassias[§] Department of Mathematics, National Technical University of Athens Zografou Campus, 15780 Athens, Greece

Received May 26, 2008, Accepted May 26, 2008.

Abstract

In this paper, we prove the Hyers-Ulam stability of a special type of systems of Euler differential equations of first order.

Keywords and Phrases: *Hyers-Ulam stability, Euler differential equation, Matrix method.*

^{*2000} Mathematics Subject Classification. Primary: 26D10; secondary: 34A40, 39B82.

[†]E-mail: smjung@hongik.ac.kr

[‡]E-mail: bkim@hongik.ac.kr

[§]E-mail: trassias@math.ntua.gr

1. Introduction

Assume that X is a normed space over a scalar field \mathbb{K} and that I is an open interval, where \mathbb{K} denotes either \mathbb{R} or \mathbb{C} . Let $a_0, a_1, \ldots, a_n : I \to \mathbb{K}$ be given continuous functions, let $g : I \to X$ be a given continuous function, and let $y : I \to X$ be any n times continuously differentiable function satisfying the inequality

$$\|a_n(t) y^{(n)}(t) + a_{n-1}(t) y^{(n-1)}(t) + \dots + a_1(t) y'(t) + a_0(t) y(t) + g(t)\| \le \varepsilon$$

for all $t \in I$ and for a given $\varepsilon > 0$. If there exists a function $y_0 : I \to X$ satisfying

$$a_n(t) y^{(n)}(t) + a_{n-1}(t) y^{(n-1)}(t) + \dots + a_1(t) y'(t) + a_0(t) y(t) + g(t) = 0$$

and $||y(t) - y_0(t)|| \leq K(\varepsilon)$ for any $t \in I$, where $K(\varepsilon)$ is an expression of ε with $\lim_{\varepsilon \to 0} K(\varepsilon) = 0$, then we say that the above differential equation has the Hyers-Ulam stability. For more detailed definitions of the Hyers-Ulam stability, we refer the reader to [2, 3, 4, 7, 9].

Alsina and Ger were the first authors who investigated the Hyers-Ulam stability of differential equations: They proved in [1] that if a differentiable function $y : I \to \mathbb{R}$ satisfies the differential inequality $|y'(t) - y(t)| \leq \varepsilon$, where I is an open subinterval of \mathbb{R} , then there exists a differentiable function $y_0 : I \to \mathbb{R}$ satisfying $y'_0(t) = y_0(t)$ and $|y(t) - y_0(t)| \leq 3\varepsilon$ for any $t \in I$.

This result of Alsina and Ger has been generalized by Takahasi, Miura and Miyajima. They proved in [8] that the Hyers-Ulam stability holds true for the Banach space valued differential equation $y'(t) = \lambda y(t)$. Miura, Miyajima and Takahasi [6] investigated the Hyers-Ulam stability of *n*th order linear differential equation with complex coefficients. Furthermore, they proved the Hyers-Ulam stability of linear differential equations of first order, y'(t) + g(t)y(t) = 0, where g(t) is a continuous function.

Now, suppose we are given a system of first order Euler differential equations as follows:

$$\begin{cases} ty_1'(t) = a_{11}y_1(t) + a_{12}y_2(t) + \dots + a_{1n}y_n(t) + b_1(t), \\ ty_2'(t) = a_{21}y_1(t) + a_{22}y_2(t) + \dots + a_{2n}y_n(t) + b_2(t), \\ \vdots & \vdots & \vdots & \vdots \\ ty_n'(t) = a_{n1}y_1(t) + a_{n2}y_2(t) + \dots + a_{nn}y_n(t) + b_n(t). \end{cases}$$
(1)

This system may be written in a simple matrix notation

$$t\vec{y}'(t) = \mathbf{A}\vec{y}(t) + \vec{b}(t)$$

if we set

$$\vec{y}(t) = \begin{pmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_n(t) \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}, \quad \vec{b}(t) = \begin{pmatrix} b_1(t) \\ b_2(t) \\ \vdots \\ b_n(t) \end{pmatrix}.$$

In this paper, we will adopt the idea of [5] and prove the Hyers-Ulam stability of the system (1) of Euler differential equations of first order. More precisely, we prove that if a continuously differentiable vector function \vec{y} : $(0, \infty) \to \mathbb{C}^n$ satisfies

$$\|t\vec{y}'(t) - \mathbf{A}\vec{y}(t) - \vec{b}(t)\|_n \le \varepsilon$$

for all $t \in (0, \infty)$, where $\|\cdot\|_n$ is a norm on \mathbb{C}^n , then there exists a differentiable vector function $\vec{y_0} : (0, \infty) \to \mathbb{C}^n$ and a constant K > 0 such that

$$t\vec{y}_0'(t) = \mathbf{A}\vec{y}_0(t) + \vec{b}(t) \quad \text{and} \quad \|\vec{y}(t) - \vec{y}_0(t)\|_n \le K\varepsilon$$

for all t > 0.

2. Main Result

Let $(\mathbb{C}^n, \|\cdot\|_n)$ be a complex normed space and let $\mathbb{C}^{n \times n}$ be a vector space consisting of all $(n \times n)$ complex matrices. We notice that for $t \in \mathbb{R}$ and $\mathbf{A} \in \mathbb{C}^{n \times n}$ we use the notation $\mathbf{A}t$ (instead of $t\mathbf{A}$) for the scalar multiplication of t and \mathbf{A} . We choose a norm $\|\cdot\|_{n \times n}$ on $\mathbb{C}^{n \times n}$ which is compatible with $\|\cdot\|_n$, i.e., both norms obey

$$\|\mathbf{AB}\|_{n \times n} \le \|\mathbf{A}\|_{n \times n} \|\mathbf{B}\|_{n \times n}, \quad \|\mathbf{A}\vec{x}\|_n \le \|\mathbf{A}\|_{n \times n} \|\vec{x}\|_n \tag{2}$$

for all $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n}$ and $\vec{x} \in \mathbb{C}^n$.

Using the notations and assumptions given in the preceding section, recently Jung [5] proved the Hyers-Ulam stability of the system of first order linear differential equations with constant coefficients.

Theorem 1. Let $\vec{b} : \mathbb{R} \to \mathbb{C}^n$ and $\vec{y} : \mathbb{R} \to \mathbb{C}^n$ be a continuous vector function and a continuously differentiable vector function, respectively. Assume that a continuous vector function $\vec{v} : \mathbb{R} \to \mathbb{C}^n$ defined by

$$\vec{v}(t) = \vec{y}'(t) - \mathbf{A}\vec{y}(t) - \vec{b}(t)$$

satisfies

$$\|\vec{v}(t)\|_n \le \varepsilon$$

for all $t \in \mathbb{R}$ and for some $\varepsilon > 0$. Suppose that there exists a positive number C such that

$$\int_{-\infty}^{\infty} |t-s|^k | \left[\mathbf{N}^{-1} \vec{v}(s) \right]_i | \, ds \le k! C\varepsilon \| \mathbf{N}^{-1} \|_{n \times n}$$

for all $t \in \mathbb{R}$, any $k \in \{0, 1, ..., n\}$ and any $i \in \{1, ..., n\}$, where **N** is a nonsingular matrix such that $\mathbf{N}^{-1}\mathbf{A}\mathbf{N}$ is a Jordan form matrix and $[\mathbf{N}^{-1}\vec{v}(s)]_i$ denotes the *i*-th component of $\mathbf{N}^{-1}\vec{v}(s)$. Then there exists a differentiable vector function $\vec{y}_0 : \mathbb{R} \to \mathbb{C}^n$ such that

$$\vec{y}_0(t) = \mathbf{A}\vec{y}_0(t) + \vec{b}(t) \quad and \quad \|\vec{y}(t) - \vec{y}_0(t)\|_n \le \varepsilon \|\mathbf{N}\|_{n \times n} \|\mathbf{N}^{-1}\|_{n \times n} \|\mathbf{B}\vec{e}\|_n$$

for all $t \in \mathbb{R}$, where $\vec{e} = (1, 1, ..., 1)^{tr} \in \mathbb{C}^n$ and **B** is some matrix constructed by the eigenvalues of **A**.

Using the above theorem we can prove the Hyers-Ulam stability of the system (1) of first order linear differential equations with constant coefficients.

Theorem 2. Let $\vec{b} : \mathbb{R}^+ \to \mathbb{C}^n$ and $\vec{y} : \mathbb{R}^+ \to \mathbb{C}^n$ be a continuous vector function and a continuously differentiable vector function, respectively. Assume that a continuous vector function $\vec{v} : \mathbb{R}^+ \to \mathbb{C}^n$ defined by

$$\vec{v}(t) = t\vec{y}'(t) - \mathbf{A}\vec{y}(t) - \vec{b}(t)$$

satisfies

$$\|\vec{v}(t)\|_n \le \varepsilon \tag{3}$$

for all t > 0 and for some $\varepsilon > 0$. Suppose that there exists a positive number C such that

$$\int_{-\infty}^{\infty} |t-s|^k |\left[\mathbf{N}^{-1}\vec{v}(e^s)\right]_i | \, ds \le k! C\varepsilon \|\mathbf{N}^{-1}\|_{n \times n} \tag{4}$$

for all $t \in \mathbb{R}$, any $k \in \{0, 1, ..., n\}$ and any $i \in \{1, ..., n\}$, where **N** is a nonsingular matrix such that $\mathbf{N}^{-1}\mathbf{A}\mathbf{N}$ is a Jordan form matrix and $[\mathbf{N}^{-1}\vec{v}(s)]_i$ denotes the *i*-th component of $\mathbf{N}^{-1}\vec{v}(s)$. Then there exists a differentiable vector function $\vec{y}_0 : \mathbb{R}^+ \to \mathbb{C}^n$ such that

$$t\vec{y}_{0}(t) = \mathbf{A}\vec{y}_{0}(t) + \vec{b}(t) \quad and \quad \|\vec{y}(t) - \vec{y}_{0}(t)\|_{n} \le \varepsilon \|\mathbf{N}\|_{n \times n} \|\mathbf{N}^{-1}\|_{n \times n} \|\mathbf{B}\vec{e}\|_{n}$$

for all t > 0, where $\vec{e} = (1, 1, ..., 1)^{tr} \in \mathbb{C}^n$ and **B** is some matrix constructed by the eigenvalues of **A**.

Proof. Let $t = e^{\tau}$ and $\vec{z} : \mathbb{R} \to \mathbb{C}^n$ given by $\vec{z}(\tau) = \vec{y}(e^{\tau})$. Then

$$\vec{z}'(\tau) = \frac{d\vec{z}(\tau)}{d\tau} = e^{\tau} \frac{d\vec{y}}{dt}(e^{\tau}) = t\vec{y}'(t)$$

and

$$\vec{z}'(\tau) - \mathbf{A}\vec{z}(\tau) - \vec{b}(e^{\tau}) = t\vec{y}'(t) - \mathbf{A}\vec{y}(t) - \vec{b}(t) = \vec{v}(t) = \vec{v}(e^{\tau})$$

and from the assumption (3),

$$\|\vec{v}(e^{\tau})\|_n = \|\vec{v}(t)\|_n \le \varepsilon$$

for all $\tau \in \mathbb{R}$ and for some $\varepsilon > 0$.

By assumption, there exists a positive number C such that the inequality (4) holds for all $t \in \mathbb{R}$, any $k \in \{0, 1, ..., n\}$ and any $i \in \{1, ..., n\}$, where **N** is a nonsingular matrix such that $\mathbf{N}^{-1}\mathbf{A}\mathbf{N}$ is a Jordan form matrix and $[\mathbf{N}^{-1}\vec{v}(s)]_i$ denotes the *i*-th component of $\mathbf{N}^{-1}\vec{v}(s)$.

Therefore by Theorem 1, there exists a differentiable vector function $\vec{z_0}$: $\mathbb{R} \to \mathbb{C}^n$ such that

$$\vec{z}_0'(\tau) = \mathbf{A}\vec{z}_0(\tau) + \vec{b}(e^{\tau})$$

with

$$\|\vec{z}(\tau) - \vec{z}_0(\tau)\|_n \le \varepsilon \|\mathbf{N}\|_{n \times n} \|\mathbf{N}^{-1}\|_{n \times n} \|\mathbf{B}\vec{e}\|_n$$

for all $\tau \in \mathbb{R}$, where $\vec{e} = (1, 1, \dots, 1)^{tr} \in \mathbb{C}^n$.

Then the function $\vec{y_0}(t) = \vec{z_0}(\ln t)$ satisfies

$$\vec{y}_0'(t) = \frac{1}{t} \frac{dz_0}{d\tau} (\ln t) = \frac{1}{t} [\mathbf{A} \vec{z}_0 (\ln t) + \vec{b} (e^{\ln t})]$$

or

$$t\vec{y}_0'(t) = \mathbf{A}\vec{y}_0(t) + \vec{b}(t)$$

with

$$\|\vec{y}(t) - \vec{y}_0(t)\|_n = \|\vec{z}(\ln t) - \vec{z}_0(\ln t)\|_n \le \varepsilon \|\mathbf{N}\|_{n \times n} \|\mathbf{N}^{-1}\|_{n \times n} \|\mathbf{B}\vec{e}\|_n$$

for all t > 0, where $\vec{e} = (1, 1, ..., 1)^{tr} \in \mathbb{C}^n$ and **B** is some matrix constructed by the eigenvalues of **A**.

3. Some Example

Some of the most important matrix norms are induced by *p*-norms. For $1 \le p \le \infty$, the norm induced by the *p*-norm,

$$\|\mathbf{A}\|_p = \sup_{\vec{x}\neq \vec{0}} \frac{\|\mathbf{A}\vec{x}\|_p}{\|\vec{x}\|_p} \quad (\mathbf{A}\in\mathbb{C}^{n\times n}),$$

is called the matrix p-norm. For example, we get

$$\|\mathbf{A}\|_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|, \quad \|\mathbf{A}\|_\infty = \max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}|.$$

It is well known that the matrix p-norm, together with the p-norm, satisfies both conditions in (2).

Example 1. We consider a system of Euler differential equations of first order in the following form

$$\begin{cases} ty_1'(t) = y_1(t) + 2y_2(t) + b_1(t), \\ ty_2'(t) = 3y_1(t) + 2y_2(t) + b_2(t). \end{cases}$$

386

This system can be written in a matrix notation

$$t\vec{y}'(t) = \mathbf{A}\vec{y}(t) + \vec{b}(t),$$

where

$$\vec{y}(t) = \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}, \quad \vec{b}(t) = \begin{pmatrix} b_1(t) \\ b_2(t) \end{pmatrix}.$$

Assume that a continuous vector function $\vec{b}: (0,\infty) \to \mathbb{C}^2$ and a continuously differentiable vector function $\vec{y}: (0,\infty) \to \mathbb{C}^2$ satisfy

$$\|t\vec{y}'(t) - \mathbf{A}\vec{y}(t) - \vec{b}(t)\|_{\infty} \le \varepsilon$$

for all t > 0 and for some $\varepsilon \ge 0$. Since **A** has two distinct eigenvalues -1 and 4, we can choose a nonsingular matrix **N** and a diagonal matrix **J**

$$\mathbf{N} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}, \quad \mathbf{J} = \begin{pmatrix} -1 & 0 \\ 0 & 4 \end{pmatrix}$$

such that $\mathbf{J} = \mathbf{N}^{-1}\mathbf{A}\mathbf{N}$. Furthermore, since d = 2, $m_1 = m_2 = 1$ and $p_{11} = p_{21} = 1$, it follows that

$$\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{4} \end{pmatrix}.$$

According to Theorem 2, there exists a differentiable vector function $\vec{y_0}$: $(0,\infty) \to \mathbb{C}^2$ of the form

$$\vec{y}_0(t) = e^{\mathbf{A}\ln t}\vec{k} + e^{\mathbf{A}\ln t} \int_1^t e^{-\mathbf{A}\ln s}\vec{b}(s) \,\frac{ds}{s}$$

with

$$\|\vec{y}(t) - \vec{y}_0(t)\|_{\infty} \le 4\varepsilon$$

for all t > 0, where $\vec{k} \in \mathbb{C}^2$ is a constant.

References

 C. Alsina and R. Ger, On some inequalities and stability results related to the exponential function, *Journal of Inequalities and Applications* 2 (1998), 373–380.

388 Soon-Mo Jung, Byungbae Kim, and Themistocles M. Rassias

- [2] D. H. Hyers, On the stability of the linear functional equation, *Proceedings* of the National Academy of Sciences, U.S.A. **27** (1941), 222–224.
- [3] D. H. Hyers, G. Isac and Th. M. Rassias, *Stability of Functional Equations in Several Variables*, Birkhäuser, Boston, 1998.
- [4] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125–153.
- [5] S.-M. Jung, Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients, *Journal of Mathematical Analysis and Applications* **320** (2006), 549–561.
- [6] T. Miura, S. Miyajima and S.-E. Takahasi, Hyers-Ulam stability of linear differential operator with constant coefficients, *Mathematische Nachrichten* 258 (2003), 90–96.
- [7] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proceedings of the American Mathematical Society 72 (1978), 297–300.
- [8] S.-E. Takahasi, T. Miura and S. Miyajima, On the Hyers-Ulam stability of the Banach space-valued differential equation $y' = \lambda y$, Bulletin of the Korean Mathematical Society **39** (2002), 309–315.
- [9] S. M. Ulam, *Problems in Modern Mathematics*, Wiley, New York, 1964.