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Abstract

Let 0 ∈ I ⊆ R be an open interval and let C1(I, C×) be the set
of all continuously differentiable functions from I to C×, where C× is
the set of all non-zero complex numbers. If h : I → C× is a continuous
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function with M = supt∈I |
∫ t
0 |h(s)| ds| < ∞, then for each ε ≥ 0 and

f ∈ C1(I, C×) satisfying∣∣∣∣ f ′(t)
h(t)f(t)

− 1
∣∣∣∣ ≤ ε (∀t ∈ I)

there exists f0 ∈ C1(I, C×) such that f0
′(t) = h(t)f0(t) and that

max
{∣∣∣∣ f(t)

f0(t)
− 1
∣∣∣∣ , ∣∣∣∣f0(t)

f(t)
− 1
∣∣∣∣} ≤ eMε − 1

for all t ∈ I. We give an example that the constant eMε − 1 can not be
improved in general. We also prove that the assumption supt∈I |

∫ t
0 |h(s)| ds| <

∞ is essential for Ger type stability.

Keywords and Phrases: Exponential functions, Hyers-Ulam stability, Hyers-
Ulam-Rassias stability, Ger type stability

1. Introduction

It seems that the stability problem of functional equations had been first raised
by S. M. Ulam (cf. [24, Chapter VI]). “For what metric groups G is it true
that an ε-automorphism of G is necessarily near to a strict automorphism?
(An ε-automorphism of G means a transformation f of G into itself such that
ρ(f(x · y), f(x) · f(y)) < ε for all x, y ∈ G.)”

D. H. Hyers [6] gave an affirmative answer to the problem as follows.

Theorem A. Suppose that E1 and E2 are two real Banach spaces and f : E1 →
E2 is a mapping. If there exists ε ≥ 0 such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E1, then there exists a unique additive mapping T : E1 → E2

such that

‖f(x)− T (x)‖ ≤ ε

for all x ∈ E1. If, in addition, the mapping R 3 t 7→ f(tx) is continuous for
each fixed x ∈ E1, then T is linear, where R is the real number field.
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This result is called the Hyers-Ulam stability of the additive Cauchy equa-
tion g(x + y) = g(x) + g(y). Here we note that Hyers [6] calls any solution
of this equation a “linear” function or transformation. Hyers considered only
bounded Cauchy difference f(x + y) − f(x) − f(y). T. Aoki [2] introduced
unbounded one and generalized a result [6, Theorem 1] of Hyers obtaining the
stability of additive mapping. Th.M. Rassias [16], who independently intro-
duced the unbounded Cauchy difference, was the first to prove the stability of
the linear mapping between Banach spaces. The concept of the Hyers-Ulam-
Rassias stability was originated from Rassias’ paper [16] for the stability of
the linear mapping. Rassias [16] generalized Hyers’ result as follows:

Theorem B. Suppose that E1 and E2 are two real Banach spaces and f : E1 →
E2 is a mapping. If there exist ε ≥ 0 and 0 ≤ p < 1 such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ E1, then there is a unique additive mapping T : E1 → E2 such
that

‖f(x)− T (x)‖ ≤ 2ε

|2− 2p|
‖x‖p

for all x ∈ E1. If, in addition, the mapping R 3 t 7→ f(tx) is continuous for
each fixed x ∈ E1, then T is linear.

This result is, what is called, the Hyers-Ulam-Rassias stability of the ad-
ditive Cauchy equation g(x + y) = g(x) + g(y). The result of Hyers is just
the case where p = 0. So, the result of Rassias is a generalization to the case
where 0 ≤ p < 1: It should be mentioned that it allows Cauchy difference
to be unbounded. During the 27th International Symposium on Functional
Equations, Rassias raised the problem whether a similar result holds for 1 ≤ p.
Z. Gajda [3, Theorem 2] proved that Theorem B is valid for 1 < p; In the same
paper [3, Example], he also gave an example to show that a similar result to
the above does not hold for p = 1. Later, Th.M. Rassias and P. Šemrl [17,
Theorem 2] gave another counter example for p = 1. Note that if p < 0,
then ‖0‖p is obviously meaningless. However, if we assume that ‖0‖p means
∞, then with minor changes in the proof given in [16], we can prove that the
result is also valid for p < 0. Thus, the Hyers-Ulam-Rassias stability of the
additive Cauchy equation holds for all p ∈ R \ {1}.

In connection with the stability of exponential functions, C. Alsina and
R. Ger [1] remarked that the differential equation y′ = y has the Hyers-Ulam
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stability: more explicitly, if I is an open interval, ε > 0 and f : I → R is a
differentiable function satisfying |f ′(t) − f(t)| ≤ ε for all t ∈ I, then there
exists a differentiable function f0 : I → R such that f0

′(t) = f0(t) and that
|f(t)−f0(t)| ≤ 3ε for all t ∈ I. S.-E. Takahasi, T. Miura and S. Miyajima [23]
considered the Banach space valued differential equation y′ = λy, where λ is a
complex constant. Then they proved the Hyers-Ulam stability of y′ = λy under
the condition that Reλ 6= 0. This result is generalized by Miura, Miyajima
and Takahasi [9]. They considered the Banach space valued n-th order linear
differential equation with constant coefficients.

Let C be the complex number field and let C× the set of all non-zero
complex numbers. Taking the group structure of C× into account, R. Ger and
P. Šemrl [4] considered the following inequality∣∣∣∣ f(x+ y)

f(x)f(y)
− 1

∣∣∣∣ ≤ ε (∀x, y ∈ S)

for a mapping f : S → C×, where (S,+) is a semigroup. If 0 ≤ ε < 1 and
if (S,+) is a cancellative abelian semigroup, then they proved that there is a
unique function f0 : S → C× such that f0(x + y) = f0(x)f0(y) for all x, y ∈ S
and that

max

{∣∣∣∣ f(x)

f0(x)
− 1

∣∣∣∣ , ∣∣∣∣f0(x)

f(x)
− 1

∣∣∣∣} ≤
√

1 +
1

(1− ε)2
− 2

√
1 + ε

1− ε

for all x ∈ S. The stability phenomena of this kind is called Ger type stability.
Ger type stability of first order linear differential equation y′ = λy for entire

functions was studied in [11], where λ ∈ C×. In this paper, we will consider
Ger type stability of the first order linear differential equation y′ = hy for a
continuous function h from an open interval I into C×. Just for the sake of
simplicity, we only consider the case when 0 ∈ I.

2. Main Results

Lemma 2.1. Let f : I → C be a differentiable function, and let ϕ : I → C be
a continuous function. Each of the following conditions are equivalent.

(i) f ′(t) = ϕ(t)f(t) for every t ∈ I.
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(ii) f(t) = f(0) exp

∫ t

0

ϕ(s) ds for every t ∈ I.

Proof. (i) ⇒ (ii) Set ϕ̃(t) = exp
∫ t

0
ϕ(s) ds for each t ∈ I. We see that

ϕ̃′(t) = ϕ(t)ϕ̃(t). Thus, we have, for each t ∈ I, that{
f(t)

ϕ̃(t)

}′
=
f ′(t)ϕ̃(t)− f(t)ϕ̃′(t)

ϕ̃2(t)
=
f ′(t)− f(t)ϕ(t)

ϕ̃(t)
= 0,

and so f(t)/ϕ̃(t) is a constant function. This implies that f(t) = f(0)ϕ̃(t) for
every t ∈ I.

(ii)⇒ (i) By a simple calculation, we have f ′(t) = ϕ(t)f(t) for each t ∈ I,
and the proof is complete. 2

Theorem 2.2. Let h : I → C× be a continuous function with

M
def
= sup

t∈I

∣∣∣∣∫ t

0

|h(s)| ds
∣∣∣∣ <∞.

Then to each ε ≥ 0 and f ∈ C1(I,C×) satisfying∣∣∣∣ f ′(t)

h(t)f(t)
− 1

∣∣∣∣ ≤ ε (∀t ∈ I) (1)

there exists f0 ∈ C1(I,C×) such that f0
′(t) = h(t)f0(t) and that

max

{∣∣∣∣ f(t)

f0(t)
− 1

∣∣∣∣ , ∣∣∣∣f0(t)

f(t)
− 1

∣∣∣∣} ≤ eMε − 1 (2)

for all t ∈ I.

Proof. Take ε ≤ 0 and f ∈ C1(I,C×) with (1). We will prove that there
exists f0 ∈ C1(I,C×) such that f0

′(t) = h(t)f0(t) and (2) holds for all t ∈ I.
To do this, set

g(t)
def
=

f ′(t)

h(t)f(t)
− 1 (∀t ∈ I)

so that |g(t)| ≤ ε for each t ∈ I. We can write

f ′(t) = (1 + g(t))h(t)f(t) (∀t ∈ I).



450 Takeshi Miura, Sin-Ei Takahasi, Hirokazu Oka, and Norio Niwa

If we apply Lemma 2.1, then we have

f(t) = f(0) exp

∫ t

0

(1 + g(s))h(s) ds

= f(0) exp

∫ t

0

h(s) ds exp

∫ t

0

g(s)h(s) ds

for every t ∈ I. Set, for each t ∈ I, f0(t) = f(0) exp
∫ t

0
h(s) ds. We see that

f0
′(t) = h(t)f0(t) and f(t) = f0(t) exp

∫ t

0

g(s)h(s) ds.

for every t ∈ I. Since |g(t)| ≤ ε for each t ∈ I, we have∣∣∣∣ f(t)

f0(t)
− 1

∣∣∣∣ =

∣∣∣∣exp

∫ t

0

g(s)h(s) ds− 1

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=1

1

n!

(∫ t

0

g(s)h(s) ds

)n∣∣∣∣∣
≤

∞∑
n=1

1

n!

∣∣∣∣∫ t

0

|g(s)h(s)| ds
∣∣∣∣n ≤ ∞∑

n=1

1

n!

∣∣∣∣∫ t

0

ε|h(s)| ds
∣∣∣∣n .

Since |
∫ t

0
|h(s)| ds| ≤M for each t ∈ I, we have∣∣∣∣ f(t)

f0(t)
− 1

∣∣∣∣ ≤ ∞∑
n=1

1

n!
(Mε)n = eMε − 1 (∀t ∈ I).

In the same way, we have, for each t ∈ I, that∣∣∣∣f0(t)

f(t)
− 1

∣∣∣∣ ≤ eMε − 1.

We thus conclude that

max

{∣∣∣∣ f(t)

f0(t)
− 1

∣∣∣∣ , ∣∣∣∣f0(t)

f(t)
− 1

∣∣∣∣} ≤ eMε − 1

for every t ∈ I, and the proof is complete. 2

Remark 2.1. Let R× be the set of all non-zero real numbers. Similar result to
Theorem 2.2 holds for continuous function h : I → R× and C1(I,R×) in spite
of C1(I,C×), where C1(I,R×) denotes the set of all continuously differentiable
functions from I to R×.
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Example 2.1. Set, for each t ∈ R, h(t) = 2e−t
2
. Then

sup
t∈R

∣∣∣∣∫ t

0

|h(s)| ds
∣∣∣∣ =

∫ ∞
0

h(s) ds =
√
π.

For each ε with ε > 0, we define

f(t) = exp

∫ t

0

(1 + ε)h(s) ds (∀t ∈ R). (3)

It is easy to see that

f ′(t)

h(t)f(t)
− 1 = ε (∀t ∈ R).

By the proof of Theorem 2, we see that f0(t) = exp
∫ t

0
h(s) ds is a solution of

the equation y′ = hy with

max

{∣∣∣∣ f(t)

f0(t)
− 1

∣∣∣∣ , ∣∣∣∣f0(t)

f(t)
− 1

∣∣∣∣} ≤ e
√
πε − 1

for every t ∈ R. Recall, by Lemma 2.1, that the solution in C1(R,R×) of the
equation y′ = hy is of the form y(t) = cf0(t) (t ∈ R) for some constant c ∈ R×.
We will prove that if c ∈ R× satisfies the condition (4) below, then c = 1 holds.

max

{∣∣∣∣ f(t)

cf0(t)
− 1

∣∣∣∣ , ∣∣∣∣cf0(t)

f(t)
− 1

∣∣∣∣} ≤ e
√
πε − 1 (∀t ∈ R). (4)

To do this, let c ∈ R× satisfy (4). Set

h̃(t) = exp

∫ t

0

εh(s) ds (∀t ∈ R).

Then, by (3), h̃ : R→ R satisfies f(t) = f0(t)h̃(t) for every t ∈ R,

lim
t→−∞

h̃(t) = e−
√
πε and lim

t→∞
h̃(t) = e

√
πε. (5)

By (4), we have

max

{∣∣∣∣∣ h̃(t)

c
− 1

∣∣∣∣∣ ,
∣∣∣∣ c

h̃(t)
− 1

∣∣∣∣
}
≤ e

√
πε − 1 (∀t ∈ R). (6)
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It follows from (6) that

2− e
√
πε ≤ h̃(t)

c
≤ e

√
πε

for every t ∈ R. By letting t→∞, we have by (5) that

2− e
√
πε ≤ e

√
πε

c
≤ e

√
πε,

which proves that

2e−
√
πε − 1 ≤ 1

c
≤ 1. (7)

By (6), we also have

2− e
√
πε ≤ c

h̃(t)
≤ e

√
πε (∀t ∈ R).

Letting t→ −∞, it follows from (5) that

2e−
√
πε − 1 ≤ c ≤ 1. (8)

We prove c > 0. For if c < 0, then we have by (8) that 2e−
√
πε − 1 < 0. It

follows from (7) and (8) that

2e−
√
πε − 1 ≤ c ≤ 1

2e−
√
πε − 1

.

Since 2e−
√
πε − 1 < 0, we have (2e−

√
πε − 1)2 ≥ 1, which shows

4e−
√
πε(e−

√
πε − 1) ≥ 0.

We now reach a contradiction since 0 < e−
√
πε < 1. Thus, we have c > 0.

Finally, we show that c = 1. Indeed, we have c ≤ 1 by (8). On the other
hand, since c > 0, it follows from (7) that 1 ≤ c. We thus conclude c = 1.

Remark 2.2. Let f and f0 be from Example 2.1. By a simple calculation, we
see that

sup
t∈R

∣∣∣∣ f(t)

f0(t)
− 1

∣∣∣∣ = sup
t∈R

∣∣∣∣exp

∫ t

0

εh(s) ds− 1

∣∣∣∣ = e
√
πε − 1.

Since (4) holds only for c = 1, the constant e
√
πε−1 is best possible. Therefore,

the constant eMε − 1 is Theorem 2.2 can not be improved in general.
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In Theorem 2.2, we proved Ger type stability of the first order linear differ-
ential equation y′ = hy for continuous function h : I → C× with supt∈I |

∫ t
0
|h(s)| ds <

∞. The above condition is essential in the following sense.

Theorem 2.3. Let h : I → C× be a continuous function. Suppose that there
exists a constant K ≥ 0 with the following condition:

(∗) to each f ∈ C1(I,C×) satisfying∣∣∣∣ f ′(t)

h(t)f(t)
− 1

∣∣∣∣ ≤ 1 (∀t ∈ I)

there corresponds f0 ∈ C1(I,C×) such that f0
′(t) = h(t)f0(t) and that

max

{∣∣∣∣ f(t)

f0(t)
− 1

∣∣∣∣ , ∣∣∣∣f0(t)

f(t)
− 1

∣∣∣∣} ≤ K

for all t ∈ I.

Then we have

sup
t∈I

∣∣∣∣∫ t

0

|h(s)| ds
∣∣∣∣ <∞.

Proof. Suppose that there exists a constant K ≥ 0 with the condition (∗).
Set, for each t ∈ I,

f(t) = exp

∫ t

0

(|h(s)|+ h(s)) ds. (9)

It is obvious that

f ′(t) = (|h(t)|+ h(t))f(t) (∀t ∈ I).

It follows that∣∣∣∣ f ′(t)

h(t)f(t)
− 1

∣∣∣∣ =

∣∣∣∣ |h(t)|+ h(t)

h(t)
− 1

∣∣∣∣ =

∣∣∣∣ |h(t)|
h(t)

∣∣∣∣ = 1

for each t ∈ I. By the condition (∗), there exist f0 ∈ C1(I,C×) such that
f0
′(t) = h(t)f0(t) and that

max

{∣∣∣∣ f(t)

f0(t)
− 1

∣∣∣∣ , ∣∣∣∣f0(t)

f(t)
− 1

∣∣∣∣} ≤ K (10)
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for every t ∈ I. Since f0
′ = hf0, it follows from Lemma 2.1 that f0 is of the

form

f0(t) = f0(0) exp

∫ t

0

h(s) ds (∀t ∈ I). (11)

Note that f0(0) 6= 0 since f0 ∈ C1(I,C×). Set, for each t ∈ I,

ψ(t) =
1

f0(0)
exp

∫ t

0

|h(s)| ds.

Then, by (9) and (11), we have

f(t) = f0(t)ψ(t) (∀t ∈ I). (12)

It follows from (10) and (12), that

max

{
|ψ(t)− 1|,

∣∣∣∣ 1

ψ(t)
− 1

∣∣∣∣} ≤ K (13)

for every t ∈ I. Therefore, we have

|ψ(t)| ≤ K + 1 and

∣∣∣∣ 1

ψ(t)

∣∣∣∣ ≤ K + 1 (∀t ∈ I).

By the definition of ψ, we have

|f0(0)|
K + 1

≤ exp

∫ t

0

|h(s)| ds ≤ (K + 1)|f0(0)| (∀t ∈ I).

We thus conclude that supt∈I |
∫ t

0
|h(s)| ds| <∞. This completes the proof. 2
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