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Abstract
In this paper, the (ψ, γ)–stability of the quadratic functional equa-

tion is considered on arbitrary groups. It is proved that every group
can be embedded into a group in which the quadratic equation is (ψ, γ)-
stable. Further, it is shown that the quadratic functional equation is
(ψ, γ)-stable on all abelian groups and some non-abelian groups such
as UT (3,K), T (3,K) and T (2,K), where K is an arbitrary field. The
results of Skof [19] and Czerwik [4] are generalized in this paper.
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1. Introduction

In 1940 to the audience of the Mathematics Club of the University of Wisconsin
S. M. Ulam presented a list of unsolved problems [20]. One of these problems
can be considered as the starting point of a new line of investigations: the
stability problem. The problem was posed as follows. If we replace a given
functional equation by a functional inequality, then under what conditions
we can say that the solutions of the inequality are close to the solutions of
the equation. For example, given a group G1, a metric group (G2, d) and a
positive number ε, the Ulam question is: Does there exist a δ > 0 such that
if the map f : G1 → G2 satisfies d(f(xy), f(x)f(y)) < δ for all x, y ∈ G1,
then a homomorphism T : G1 → G2 exists with d(f(x), T (x)) < ε for all
x, y ∈ G1? In the case of a positive answer to this problem, we say that
Cauchy functional equation f(xy) = f(x)f(y) is stable for the pair (G1, G2).
The interested reader should refer to [20] and [13] for an account on Ulam’s
problem.

Hyers [12] proved the following result to give an affirmative answer to
Ulam’s problem. Let X, Y be Banach spaces and let f : X → Y be a mapping
satisfying

||f(x+ y)− f(x)− f(y)|| ≤ ε

for all x, y in X. Then there exists a unique additive map A : X → Y satisfying

||f(x)− A(x)|| ≤ ε

for all x in X. This pioneer result of Hyers can be expressed in the following
way: Cauchy’s functional equation is stable for any pair of Banach spaces.

Aoki [1] proved a generalized version of the previous result which permitted
the Cauchy difference to become unbounded. That is, he assumed that

|| f(x+ y)− f(x)− f(y) || ≤ ε (||x||p + ||y||p) for all x, y ∈ X,

where ε and p are constants satisfying ε > 0 and 0 ≤ p < 1. By making use
of the direct method of Hyers [12], he proved in this case too, that there is an
additive function T from X into Y given by the formula

T (x) = lim
n→∞

1

2n
f(2nx)

such that
||T (x)− f(x)|| ≤ k ε ||x||p,
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where k depends on p as well as ε. Independently, Th.M. Rassias [17] in
1978 rediscovered the above result and proved that the mapping T is not
only additive, under certain conditions, it is also linear. Rassias’s paper [17]
provided an impetus for a lot of activities in stability theory of functional
equations. The first paper to extend Rassias’s result to a class nonabelian
groups and semigroups was [8].

The quadratic functional equation

f(xy) + f(xy−1) = 2f(x) + 2f(y) (1.1)

where f is defined on a group G and takes its values from a vector space E,
is an important equation in the theory of functional equations and it plays an
important role in the characterization of inner product spaces [7]. The stability
of the quadratic functional equation (1.1) was first proved by Skof [19] for
functions from a normed space into a Banach space. Cholewa [2] demonstrated
that Skof’s theorem is also valid if the relevant domain is replaced by an
Abelian group. Later, Fenyő [10] improved the bound obtained and Cholewa

from ε
2

to ε+‖f(0)‖
3

(cf. [3]).

Theorem 1.1. Let G be an Abelian group and let E be a Banach space. If a
function f : G→ E satisfies the inequality

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ε

for some ε ≥ 0 and for all x, y ∈ G, then there exists a unique quadratic
function q : G→ E such that

‖f(x)− q(x)‖ ≤ 1

3
(ε+ ‖f(0)‖)

for all x ∈ G.

The above theorem can be expressed in the following way: The quadratic
functional equation is stable for the pair (G,E), where G is an Abelian group
and E is a Banach space. In the paper [4], the following result on Hyers-
Ulam-Rassias stability of quadratic functional equation on normed space was
obtained that generalized the results of Skof [19] and Cholewa [2].

Theorem 1.2. Let E1 be a normed space and E2 a Banach space and let
f : E1 → E2 be a function satisfying inequality

||f(x+ y) + f(x− y)− 2f(x)− 2f(y)|| ≤ ϕ(x, y) (1.2)

with either
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1. ϕ(x, y) = ε+ θ(||x||p + ||y||p), p < 2, x, y ∈ X \ {0} or

2. ϕ(x, y) = θ(||x||p + ||y||p), p > 2, x, y ∈ X

for some ε, θ ≥ 0. Then there exists a unique quadratic map Q : E1 → E2

such that

||f(x)−Q(x)|| ≤ 1

3
(ε+ ||f(0)||) +

2θ

4− 2p
||x||p, x ∈ E1 \ {0}

in case 1 and

||f(x)−Q(x)|| ≤ 2θ

2p − 4
||x||p, x ∈ E1

in case 2.

Various works on stability of the quadratic functional equation can be
found in Skof [19], Cholewa [2], Fenyő [10], Ger [11], Czerwik [3], [4], [5], [6],
Jung [14], [15], Jung and Sahoo [16], and Rassias [18]. In all these works, the
stability of the quadratic equation or a more general quadratic equation was
treated for the pair (G,E) when G is an Abelian group. In the present paper,
we consider the stability of the functional equation (1.1) for the pair (G,E)
when G is an arbitrary group and E is a real Banach space. The Skof’s result
[19] is a particular case of this result. We also show that any group can be
embedded into a group G such that the functional equation (1.1) is stable on
G.

In this paper, we generalize Theorem 1.2 in two different ways. First, we
use a more general term on the right hand side of (1.2), namely a+θ [ψ(γ(x))+
ψ(γ(y))], where a and θ are positive constants, γ : G → (0,∞) is a function
satisfying some special conditions to be discussed in the next section, and
ψ : [0,∞)→ (0,∞) is an increasing subadditive function. Second, we replace
the domain of the function f by some of noncommutative group G. The paper
is organized as follows: In Section 2, we present some preliminary results that
will be needed to prove some results in the subsequent sections of this paper.
In Section 3, we prove the (ψ, γ)-stability of quadratic functional equation on
abelian group, and nonabelian groups such as UT (3, K), T (2, K), and T (3, K),
where K is an arbitrary field. Among other results, we prove that any group A
can be embedded into a group G such that the quadratic functional equation
is (ψ, γ)-stable on G.
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2. Preliminary results

We will denote the set of real numbers by R and the set of natural numbers
by N. Let R+

0 = [0,∞) be the set of non-negative numbers and R+ = (0,∞)
be the set of positive numbers. Let G be an arbitrary group. Throughout
this paper, the function ψ : R+

0 → R+ is considered to be an increasing and
subadditive function, that is ψ satisfies the conditions:

1. ψ(t1) ≤ ψ(t2) for all t1, t2 ∈ R+
0 whenever t1 ≤ t2, and

2. ψ(t1 + t2) ≤ ψ(t1) + ψ(t2) for all t1, t2 ∈ R+
0 .

Throughout this paper, by γ we will mean a function γ : G→ R+
0 satisfying

1. γ(x−1) = γ(x) for all x ∈ G, and

2. γ(xy) ≤ γ(x) + γ(y) + d for all x, y ∈ G

for some nonnegative real number d. It is clear that for any x ∈ G and any
m ∈ N the following inequalities hold

ψ(γ(xm)) ≤ ψ(mγ(x) +md) ≤ mψ(γ(x) + d) ≤ mψ(γ(x)) +mψ(d). (2.1)

Definition 2.1. Let G be a group and E a Banach space. The function f :
G→ E is said to be a (ψ, γ)–quasiquadratic mapping if there are nonnegative
numbers a and θ such that for any x, y ∈ G

‖f(xy) + f(xy−1)− 2f(x)− 2f(y)‖ ≤ a+ θ [ψ(γ(x)) + ψ(γ(y))] (2.2)

holds. The set of all (ψ, γ)–quasiquadratic mappings will be denoted by the set
KQψ,γ(G,E).

Clearly, the set of all (ψ, γ)–quasiquadratic mappings, KQψ,γ(G,E), is a
linear space.

Lemma 2.2. Let f ∈ KQψ,γ(G,E) be a (ψ, γ)-quasiquadratic mapping. Then
for any m ≥ 2 there are nonnegative numbers cm and θm such that

‖f(xm)−m2f(x)‖ ≤ cm + θm ψ(γ(x)), ∀x ∈ G. (2.3)
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Proof. We will prove this lemma by induction on m. By letting y = x in
(2.2), we obtain

‖f(x2) + f(1)− 4f(x)‖ ≤ a+ 2θ ψ(γ(x)) ∀x ∈ G.

Therefore

‖f(x2)− 4f(x)‖ ≤ a+ ‖f(1)‖+ 2θ ψ(γ(x)) ∀x ∈ G.

If we put c2 = a+ ‖f(1)‖ and θ2 = 2θ in the last inequality, then we get

‖f(x2)− 4f(x)‖ ≤ c2 + θ2 ψ(γ(x)) ∀x ∈ G.

Replacing x by xm and y by x in (2.2), we obtain

‖f(xm+1) + f(xm−1)− 2f(xm)− 2f(x)‖ ≤ a+ θ [ψ(γ(xm)) + ψ(γ(x))]

for all x ∈ G. Using (2.1) in the last inequality, we see that

‖f(xm+1)+f(xm−1)−2f(xm)−2f(x)‖ ≤ a+mθψ(d)+θ [mψ(γ(x))+ψ(γ(x))]

which is

‖f(xm+1) + f(xm−1)− 2f(xm)− 2f(x)‖ (2.4)

≤a+mθ ψ(d) + θ [m+ 1]ψ(γ(x))

for all x ∈ G. Suppose that (2.3) has been already established for 2 ≤ m ≤ k.
Let us check it for k + 1. From (2.4), we have

‖f(xk+1) + f(xk−1)− 2f(xk)− 2f(x)‖ ≤ a+ kθψ(d) + θ[k + 1]ψ(γ(x)).

Using (2.3) in the last inequality, we see that

‖f(xk+1) + (k − 1)2f(x)− 2k2f(x)− 2f(x)‖
≤a+ kθψ(d) + θ[k + 1]ψ(γ(x)) + ck−1 + θk−1ψ(γ(x)) + 2ck + 2θk ψ(γ(x)).

Therefore

‖f(xk+1)− (k + 1)2f(x)‖
≤a+ k θ ψ(d) + ck−1 + 2ck + [θ(k + 1) + θk−1 + 2θk]ψ(γ(x)).
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Letting ck+1 = a + kθψ(d) + ck−1 + 2ck and θk+1 = θ(k + 1) + θk−1 + 2θk
we obtain the asserted inequality (2.3) and the proof of the lemma is now
complete. 2Let

ρm(k) =
k−1∑
i=0

(
1

m2

)i
and πm(k) =

k−1∑
i=0

(
1

m

)i
. (2.5)

Lemma 2.3. Let f ∈ KQψ,γ(G,E) and m ∈ N with m ≥ 2. For any k ∈ N
the inequality ∥∥∥∥ 1

m2k
f(xm

k

)− f(x)

∥∥∥∥ (2.6)

≤ cm
m2

ρm(k) + ψ(d) θm rm(k) +
θm
m2

πm(k)ψ(γ(x))

holds. Here cm and θm are nonnegative numbers, πm(k) and ρm(k) are numbers
as defined in (2.5), and 0 ≤ rm(n) < 1.

Proof. From Lemma 2.2 it follows that∥∥∥∥ 1

m2
f(xm)− f(x)

∥∥∥∥ ≤ cm
m2

+
θm
m2

ψ(γ(x)). (2.7)

So, rm(1) = 0. Suppose that (2.6) has been already established for k =
1, 2, . . . , n. Let us check it for k = n + 1. Using the induction hypothesis, we
have ∥∥∥∥ 1

m2n
f(xm

n

)− f(x)

∥∥∥∥
≤ cm
m2

ρm(n) + ψ(d) θm rm(n) +
θm
m2

πm(n)ψ(γ(x)).

Substituting xm for x, we get∥∥∥∥ 1

m2n
f(xm

n+1

)− f(xm)

∥∥∥∥
≤ cm
m2

ρm(n) + ψ(d) θm rm(n) +
θm
m2

πm(n)ψ(γ(xm)).
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Hence using (2.1), we obtain∥∥∥∥ 1

m2(n+1)
f(xm

n+1

)− 1

m2
f(xm)

∥∥∥∥
≤ cm
m4

ρm(n) + ψ(d) θm rm(n)
1

m2
+
θm
m4

πm(n)mψ(γ(x) + d).

From the last inequality and (2.7), we obtain∥∥∥∥ 1

m2(n+1)
f(xm

n+1

)− f(x)

∥∥∥∥
≤
∥∥∥∥ 1

m2(n+1)
f(xm

n+1

)− 1

m2
f(xm)

∥∥∥∥+

∥∥∥∥ 1

m2
f(xm)− f(x)

∥∥∥∥
≤ cm
m4

ρm(n) + ψ(d) θm
rm(n)

m2
+
θm
m4

πm(n)mψ(γ(x) + d) +
cm
m2

+
θm
m2

ψ(γ(x))

=
cm
m4

ρm(n) +
cm
m2

+ ψ(d) θm
rm(n)

m2
+
θm
m4

πm(n)mψ(γ(x) + d) +
θm
m2

ψ(γ(x))

=

[
ρm(n)

m2
+ 1

]
cm
m2

+ ψ(d) θm

[
rm(n)

m2
+
πm(n)

m3

]
+

[
πm(n)

m
+ 1

]
θm
m2

ψ(γ(x))

=
cm
m2

ρm(n+ 1) + ψ(d) θm

[
rm(n)

m2
+
πm(n)

m3

]
+ πm(n+ 1)

θm
m2

ψ(γ(x)).

Put rm(n + 1) = rm(n) 1
m2 + 1

m3 πm(n) then it is clear that 0 ≤ rm(n + 1) < 1
and the proof of the lemma is complete. 2

Lemma 2.4. Let f ∈ KQψ,γ(G,E) be a (ψ, γ)-quasiquadratic mapping. For

any m ≥ 2 and any x ∈ G, the sequence
{

1
m2k f(xm

k
)
}∞
k=1

is a Cauchy sequence
with

fm(x) = lim
k→∞

1

m2k
f
(
xm

k
)
. (2.8)

Proof. Let

αm =
∞∑
i=0

1

m2i
and βm =

∞∑
i=0

(
1

m

)i
. (2.9)

Then by (2.7) and (2.9), we have∥∥∥∥ 1

m2n
f(xm

n

)− f(x)

∥∥∥∥ ≤ cm
m2

αm + ψ(d) θm +
θm
m2

βm ψ(γ(x)).
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Substituting xm
k

for x in the last inequality, we get∥∥∥∥ 1

m2n
f(xm

n+k

)− f(xm
k

)

∥∥∥∥
≤ cm
m2

αm + ψ(d) θm +
θm
m2

βm ψ(γ(xm
k

))

≤ cm
m2

αm + ψ(d) θm +
θm
m2

βmm
k ψ(d) +

θm
m2

βmm
k ψ(γ(x))

and therefore∥∥∥∥ 1

m2(n+k)
f(xm

n+k

)− 1

m2k
f(xm

k

)

∥∥∥∥
≤ αm
m2k

cm
m2

+
ψ(d) θm
m2k

+
βm
m2k

θm
m2

mk ψ(d) +
βm
m2k

θm
m2

mk ψ(γ(x))

≤ cm
m2k+2

αm + ψ(d)θm
1

m2k
+

θm
mk+2

βm ψ(d) +
θm
mk+2

βm ψ(γ(x)).

From the latter relation it follows that the sequence
{

1
m2k f(xm

k
)
}∞
k=1

is a
Cauchy sequence, and therefore has a limit which we denote by fm(x). This
completes the proof of the lemma. 2

Let

am =
cm
m2

αm + ψ(d) θm and bm =
θm
m2

βm. (2.10)

Let δm(x) = am + bm ψ(γ(x)). Then

δm(xy) = am + bm ψ(γ(xy))

≤ am + bm ψ(γ(x)) + bm ψ(γ(y)) + bm ψ(d)

≤ δm(x) + δm(y) + bm ψ(d)

= 2 am + bm ψ(d) + bm [ψ(γ(x)) + ψ(γ(y))].

Similarly

δm(xy−1) ≤ 2 am + bm ψ(d) + bm [ψ(γ(x)) + ψ(γ(y))].

From (2.6) it follows that∥∥∥∥ 1

m2k
f(xm

k

)− f(x)

∥∥∥∥ ≤ am + bm ψ(γ(x)), (2.11)

and letting k →∞, we have

‖fm(x)− f(x)‖ ≤ δm(x).
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Lemma 2.5. For any m ≥ 2, the function fm, defined in (2.8), belongs to the
set KQψ,γ(G,E).

Proof. Indeed, for any x, y ∈ G, we have∥∥fm(xy) + fm(xy−1)− 2fm(x)− 2fm(y)
∥∥

≤‖f(xy) + f(xy−1)− 2f(x)− 2f(y)‖+ ‖fm(xy)− f(xy)‖
+ ‖fm(xy−1)− f(xy−1)‖+ 2‖fm(x)− f(x)‖+ 2‖fm(y)− f(y)‖
≤a+ θ[ψ(γ(x)) + ψ(γ(y))] + δm(xy) + δm(xy−1) + 2δm(x) + 2δm(y)

≤a+ θ[ψ(γ(x)) + ψ(γ(y))] + 2am + bmψ(d) + bm[ψ(γ(x)) + ψ(γ(y))]

+ 2am + bmψ(d) + bm[ψ(γ(x)) + ψ(γ(y))]

+ 2am + 2bmψ(γ(x)) + 2am + 2bmψ(γ(y)).

≤a+ 8am + 2bmψ(d) + (θ + 4bm)[ψ(γ(x)) + ψ(γ(y))].

Since a + 8am + 2bmψ(d) and θ + 4bm are nonnegative, fm ∈ KQψ,γ(G,E).
This completes the proof of the lemma. 2

Lemma 2.6. The function fm, defined in (2.8), satisfies fm = f2 for all
m > 2.

Proof. From the definition of fm it follows that for any k ∈ N and x ∈ G the
relations fm(xm

k
) = m2kfm(x) and f2(x

2k
) = 22kf2(x) hold. From Lemma 2.5,

we see that fm, f2 ∈ KQψ,γ(G,E). Hence, by Lemma 2.4, function

φ(x) = lim
n→∞

1

22n
fm
(
x2n)

is well defined and belongs to the set KQψ,γ(G,E). Let c and d be nonnegative
numbers such that

‖φ(x)− fm(x)‖ ≤ c+ dψ(γ(x)), ∀x ∈ G. (2.12)

From (2.11) it follows

‖φ(x)− f(x)‖ ≤ c+ am + (d+ bm)ψ(γ(x)), ∀x ∈ G. (2.13)

Taking into account relation

‖f2(x)− f(x)‖ ≤ a2 + b2 ψ(γ(x)), ∀x ∈ G
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we get

‖φ(x)− f2(x)‖ ≤ c+ am + a2 + (d+ bm + b2)ψ(γ(x)), ∀x ∈ G. (2.14)

Therefore

‖fm(x)− f2(x)‖ ≤ am + a2 + (bm + b2)ψ(γ(x)), ∀x ∈ G.

It is clear that for any ` ∈ N we have

φ(xm
`

) = m2`φ(x), φ(x2`

) = 22`φ(x),

hence, from (2.12) we have

‖φ(x2`

)− f2(x
2`

)‖ ≤ c+ am + a2 + (d+ bm + b2)ψ(γ(x2`

)),

22`‖φ(x)− f2(x)‖ ≤ c+ am + a2 + (d+ am + a2) 2` ψ(γ(x) + d),

‖φ(x)− f2(x)‖ ≤ c+ am + a2

22`
+ (d+ bm + b2)

2`

22`
ψ(γ(x) + d),

and we see that φ ≡ f2. Similarly we check that φ ≡ fm. Therefore fm ≡ f2.
This completes the proof. 2

Denote by f̂ a function defined by the formula

f̂(x) = lim
k→∞

1

4k
f(x2k

). (2.15)

Definition 2.7. A (ψ, γ)–quasiquadratic mapping φ : G → E is said to be
(ψ, γ)–pseudoquadratic mapping if φ satisfies ϕ(xn) = n2ϕ(x) for all x ∈ G
and all n ∈ N. The set of all (ψ, γ)–pseudoquadratic mappings will be denoted
by the set PQψ,γ(G,E).

From Lemma 2.6 we obtain the following corollary.

Corollary 2.8. The function f̂ , defined by (2.15), is a (ψ, γ)–pseudoquadratic
mapping and satisfies the following relation∥∥∥∥ 1

m2k
f(xm

k

)− f(x)

∥∥∥∥ ≤ am + bm ψ(γ(x)). (2.16)

Definition 2.9. By Bψ,γ(G,E) we donote the set of all functions f such that
if f belongs to Bψ,γ(G,E), then there are nonnegative numbers a and b such
that

‖f(x)‖ ≤ a+ b ψ(γ(x)) (2.17)

for all x ∈ G.
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Theorem 2.10. The linear space KQψ,γ(G,E) of all (ψ, γ)-quasiquadratic
mappings can be decomposed as the direct sum of PQψ,γ(G,E) and Bψ,γ(G,E),
that is KQψ,γ(G,E) = PQψ,γ(G,E)⊕Bψ,γ(G,E).

Proof. It is easy to see that PQψ,γ(G,E) and Bψ,γ(G,E) are linear subspaces
of KQψ,γ(G,E). Let us show that PQψ,γ(G,E) ∩ Bψ,γ(G,E) = {0}. Indeed,
if f ∈ PQψ,γ(G,E) ∩Bψ,γ(G,E), then using (2.17) we have for any k ∈ N

‖f(x2k

)‖ ≤ a+ b ψ(γ(x2k

))

which by (2.1) and the fact that f is (ψ, γ)-pseudoquadratic implies

4k ‖f(x)‖ ≤ a+ b 2k ψ(γ(x) + d).

Rewriting the last inequality, we have

‖f(x)‖ ≤ a

4k
+

b

2k
ψ(γ(x) + d),

and taking the limit as k →∞ we see that f(x) = 0.
Let f be an arbitrary element of KQψ,γ(G,E), then by Corollary 2.8,

f̂ ∈ PQψ,γ(G,E). Again from Corollary 2.8 we see that f − f̂ ∈ BQψ,γ(G,E).
Now the proof is complete. 2

3. Stability

Definition 3.1. Let ψ : R+
0 → R+ and γ : G→ R+

0 be the functions as stated
in the beginning of Section 2, and let f : G→ E. The quadratic equation

f(xy) + f(xy−1)− 2f(x)− 2f(y) = 0 (3.1)

is said to be (ψ, γ)-stable if for any function ϕ satisfying condition

‖ϕ(xy) + ϕ(xy−1)− 2ϕ(x)− 2ϕ(y)‖ ≤ a+ b [ψ(γ(x)) + ψ(γ(y))]

there exists a solution g of the equation (3.1), such that

‖ϕ(x)− g(x)‖ ≤ c+ dψ(γ(x))

for some nonnegative numbers c and d and any x ∈ G.
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The set of all solutions of the quadratic functional equation (3.1) will be
denoted by Q(G,E). Clearly, Q(G,E) is a linear space.

Proposition 3.2. The quadratic equation (3.1) is (ψ, γ)-stable if and only if
PQψ,γ(G,E) = Q(G,E).

Proof. The proof follows from Theorem 2.10. 2

Lemma 3.3. The quadratic equation (3.1) is (ψ, γ)-stable for any abelian
group G.

Proof. Let G be an abelian group. Thus (xy)p = xpyp for any p ∈ N and for
any x, y ∈ G. Let f ∈ PQψ,γ(G,E). Then we have

‖ f((xy)p) + f((xy−1)p)− 2f(xp)− 2f(yp) ‖
=‖ f(xpyp) + f(xp(y−1)p)− 2f(xp)− 2f(xp) ‖
≤a+ b [ψ(γ(xp)) + ψ(γ(yp))]

≤a+ b [pψ(γ(x) + d) + pψ(γ(y) + d)].

Therefore

p2 ‖ f(xy) + f(xy−1)− 2f(x)− 2f(y) ‖
≤a+ b p [ψ(γ(x) + d) + ψ(γ(y) + d)]

which is

‖ f(xy) + f(xy−1)− 2f(x)− 2f(y) ‖

≤ a

p2
+

b

p2
[ψ(γ(x) + d) + ψ(γ(y) + d)].

Letting p→∞ in the last inequality, we have

f(xy) + f(xy−1)− 2f(x)− 2f(y) = 0.

Hence f ∈ Q(G,E). By Proposition 3.2 the equation (3.1) is (ψ, γ)-stable and
the proof of the lemma is complete. 2

Lemma 3.4. Let f ∈ PQψ,γ(G,E). Then for any x, y ∈ G the following
relations hold:

1. f(x−1) = f(x),

2. f(xy) = f(yx).
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Proof. 1. Since f ∈ PQψ,γ(G,E), we have

‖ f(y) + f(y−1)− 2f(1)− 2f(y) ‖ ≤ a+ b ψ(γ(1)) + b ψ(γ(y)).

Hence

‖ f(y−1)− f(y) ‖ ≤ a+ 2 ‖f(1)‖+ b ψ(γ(1)) + b ψ(γ(y))

Therefore, for any n ∈ N, we have

‖ f(y−n)− f(yn) ‖ ≤ a+ 2 ‖f(1)‖+ b ψ(γ(1)) + b ψ(γ(yn))

and

‖ f(y−1)− f(y) ‖ ≤ a+ 2 ‖f(1)‖+ b ψ(γ(1))

n2
+ b

n

n2
ψ(γ(y) + d).

Letting n→∞ in the last inequality, we see that f(y−1) = f(y).

2. Since f ∈ PQψ,γ(G,E), we obtain

‖ f(xy) + f(xy−1)− 2f(x)− 2f(y) ‖ ≤ a+ b[ψ(γ(x)) + ψ(γ(y))].

Interchanging x with y in the last inequality, we get

‖ f(yx) + f(yx−1)− 2f(y)− 2f(x) ‖ ≤ a+ b [ψ(γ(x)) + ψ(γ(y))].

Using the fact that f(x−1) = f(x) for all x ∈ G, we get from the last inequality

‖ f(yx) + f(xy−1)− 2f(y)− 2f(x) ‖ ≤ a+ b [ψ(γ(x)) + ψ(γ(y))].

Therefore

‖ f(xy)− f(yx) ‖ ≤ 2a+ 2b [ψ(γ(x)) + ψ(γ(y))].

Changing x by y−1x, we get

‖ f(y−1xy)− f(x) ‖ ≤ 2a+ 2b [ψ(γ(y−1x)) + ψ(γ(y))]

≤ 2a+ 2b [ψ(γ(y−1) + γ(x) + d) + ψ(γ(y))]

≤ 2a+ 2ψ(d) + 4b [ψ(γ(x)) + ψ(γ(y))].
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Therefore for any n ∈ N, replacing x by xn we have

‖ f(y−1xny)− f(xn) ‖ ≤ 2a+ 2ψ(d) + 4b [ψ(γ(xn)) + ψ(γ(yn))]

which simplifies to

n2‖ f(y−1xy)− f(x) ‖ ≤ 2a+ 2ψ(d) + 4bn [ψ(γ(x) + d) + ψ(γ(y) + d)].

Hence

‖ f(y−1xy)− f(x) ‖ ≤ 2a

n2
+

2ψ(d)

n2
+

4b

n
[ψ(γ(x) + d) + ψ(γ(y) + d)].

Taking n → ∞ in the last inequality, we see that f(y−1xy) = f(x) which is
f(xy) = f(yx), and the proof of the lemma is now complete. 2

Theorem 3.5. Let E1 and E2 be Banach spaces. Then quadratic equation (3.1)
is (ψ, γ)-stable for the pair (G;E1) if and only if it is (ψ, γ)-stable for the pair
(G;E2).

Proof. Let E be a real Banach space and R be the set of reals. Suppose
that equation (3.1) is (ψ, γ)-stable for pair (G;E) and it is not (ψ, γ)-stable
for pair (G,R). Then there is nontrivial (ψ, γ)−pseudoquadratic mapping f
on G. By nontrivial (ψ, γ)−pseudoqudratic mapping we mean an element of
PQψ,γ(G,E) which in not quadratic mapping. Therefore for some a, b ≥ 0 we
have

‖ f(xy) + f(xy−1)− 2f(x)− 2f(y) ‖ ≤ a+ b [ψ(γ(x)) + ψ(γ(y))]

for all x, y ∈ G. Let e ∈ E with ‖e‖ = 1. Consider a function ϕ : G → E
defined by the formula ϕ(x) = f(x) · e. It is clear that ϕ is nontrivial
(ψ, γ)−pseudoquadratic E–valued mapping. Therefore we come to a contra-
diction. Now suppose that the equation (3.1) is (ψ, γ)-stable for the pair
(G,R), that is PQψ,γ(G; R) = Q(G,R). Denote by E∗ the space of lin-
ear bounded functionals on E with norm topology. It is clear that for any
ϕ ∈ PQψ,γ(G;E) and any λ ∈ E∗ function λ◦ϕ belongs PQψ,γ(G,R). Indeed,
let for nonnegative numbers a, b and any x, y ∈ G the following relation is
fulfilled

‖ϕ(xy) + ϕ(xy−1)− 2ϕ(x)− 2ϕ(y)‖ ≤ a+ b [ψ(γ(x)) + ψ(γ(y))].
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Then

|λ ◦ ϕ(xy) + λ ◦ ϕ(xy−1)− 2λ ◦ ϕ(x)− 2λ ◦ ϕ(y)|
=|λ(ϕ(xy) + λϕ(xy−1)− 2ϕ(x)− 2ϕ(y))|
≤‖λ‖(a+ b [ψ(γ(x)) + ψ(γ(y))])

=‖λ‖ a+ ‖λ‖ b [ψ(γ(x)) + ψ(γ(y))].

It is clear that λ ◦ ϕ(x2n
) = 4nλ ◦ ϕ(x) for any x ∈ G and any n ∈ N.

Therefore the function λ ◦ ϕ belongs to PQψ,γ(G,R). Let f : G → E be a
nontrivial (ψ, γ)–pseudoquadratic mapping. Then there are x, y ∈ G such that
f(xy)+f(xy−1)−2f(x)−2f(y) 6= 0. By Hahn-Banach theorem there is ` ∈ E∗
such that `(f(xy) + f(xy−1)− 2f(x)− 2f(y)) 6= 0. Hence, ` ◦ f is a nontrivial
(ψ, γ)–pseudoquadratic function on G. Thus we come to a contradiction and
the proof is complete. 2

Due to Theorem 3.5 we can simply say that equation (3.1) is (ψ, γ)-stable
or not (ψ, γ)-stable on the group G, without mentioning a Banach space. From
now on in the case E = R, we denote spaces KQψ,γ(G,R), PQψ,γ(G,R) and
Q(G,R) by KQψ,γ(G), PQψ,γ(G) and Q(G), respectively.

3.1 G=UT(3,K)

Let K be an arbitrary field and K∗ its multiplicative group. Denote by G the
group UT (3, K) consisting of matrices of the form 1 y t

0 1 x
0 0 1

 ; x, y, t ∈ K .

Now our goal is to establish (ψ, γ)-stability of (3.1) on the group UT (3, K). To
establish (ψ, γ)-stability of (3.1) we need to show that PQψ,γ(G,E) = Q(G).
Denote by A,B,C subgroups of G, consisting of matrices of the form 1 0 0

0 1 a
0 0 1

 ,
 1 b 0

0 1 0
0 0 1

 ,
 1 0 c

0 1 0
0 0 1

 , a, b, c ∈ R

respectively. Denote by H a subgroup of G generated by B and C.
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Proposition 3.6. If ϕ ∈ PQψ,γ(G,E), then ϕ has presentation of the form
ϕ(x) = q(τ(x)), where τ : G → K × K is a homomorphism defined by the
formula

τ :

 1 b c
0 1 a
0 0 1

→ (a, b)

and q ∈ Q(K × K). Therefore PQψ,γ(G) = Q(G) and equation (3.1) is
(ψ, γ)-stable on G.

Proof. Let ϕ ∈ PQψ,γ(G). By Lemma 3.4, the function ϕ is invariant with
respect inner automorphisms of G. Hence, from relation 1 b1 c1

0 1 a1

0 0 1

−1  1 b c
0 1 a
0 0 1

 1 b1 c1
0 1 a1

0 0 1

 =

 1 b ba1 − b1a+ c
0 1 a
0 0 1


(3.2)

it follows

ϕ

 1 b c
0 1 a
0 0 1

 = ϕ

 1 b ba1 − b1a+ c
0 1 a
0 0 1

 . (3.3)

Let us check that ϕ
∣∣
C
≡ 0. Let a and b be nonnegative numbers, such that

|ϕ(xy) + ϕ(xy−1)− 2ϕ(x)− 2ϕ(y) | ≤ a+ b [ψ(γ(x)) + ψ(γ(x))]

for all x, y ∈ G. A subgroup of G generated by B and C is an abelian group.
Therefore for any β ∈ B and α ∈ C we have

ϕ(αβ2) + ϕ(α)− 2ϕ(αβ)− 2ϕ(β) = 0. (3.4)

Let

β =

 1 b 0
0 1 0
0 0 1

 and α =

 1 0 c
0 1 0
0 0 1


and b 6= 0. Then from (3.3) it follows

ϕ

 1 b 0
0 1 0
0 0 1

 = ϕ

 1 b c
0 1 0
0 0 1

 , (3.5)
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for any c ∈ R. So, ϕ(αβ2) = ϕ(β2) and (3.4) implies

ϕ(β2) + ϕ(α)− 2ϕ(β)− 2ϕ(β) = 0.

Hence

4ϕ(β) + ϕ(α)− 2ϕ(β)− 2ϕ(β) = 0

which simplifies to

ϕ(α) = 0.

Therefore, ϕ
∣∣
C
≡ 0. Now from (3.3) we obtain that ϕ is constant on any coset

of the group G by its subgroup C. Hence, there is q ∈ Q(K ×K) such that
ϕ(x) = q(τ(x)) and, hence, ϕ ∈ Q(G). The proof is complete. 2

3.2 T(2,K)

Elementary computations show that[
a c
0 b

]−1

=

[
a−1 − c

ba

0 b−1

]
.

Therefore [
a c
0 b

]−1 [
α 0
0 β

] [
a c
0 b

]
=

[
α αc

a
− βc

a

0 β

]
. (3.6)

Lemma 3.7. Let [
x z
0 y

]
be an element of T (2, R) such that x 6= y. Then there exist a, b, c, α, β such
that [

a c
0 b

]−1 [
α 0
0 β

] [
a c
0 b

]
=

[
x z
0 y

]
. (3.7)

Proof. The proof follows from letting α = x, β = y, a = 1, and c = z
x−y in

(3.6). 2

Lemma 3.8. If f ∈ PQψ,γ(G,E) and f(g) = 0 for any diagonal matrix g,
then f ≡ 0.
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Proof. Let

u =

[
x z
0 x

]
and v =

[
1 0
0 −1

]
Since f ∈ PQψ,γ(G,E), we have

|f(xy) + f(xy−1)− 2f(x)− 2f(x)| ≤ p+ q [ψ(γ(x)) + ψ(γ(y))].

for some positive numbers p, q ≥ 0. For any n ∈ N, replacing x by un and y
by v, we obtain

|f(unv) + f(unv−1)− 2f(un)− 2f(v)| ≤ p+ q [ψ(γ(un)) + ψ(γ(v))].

Since v is an element of order two and f has the property f(zn) = n2f(z) for
any n ∈ Z and any z ∈ G we get f(v) = 0. Now by previous lemma we have
f(unv) = 0. Hence

2|f(un)| ≤ p+ q [ψ(γ(un)) + ψ(γ(v))].

Since f ∈ PQψ,γ(G,E), we have f(un) = n2 f(u) and hence the last inequality
yields

2|f(u)| ≤ p

n2
+ q

[
n

n2
ψ(γ(u) + d) +

1

n2
ψ(γ(v))

]
.

So, letting n→∞, we have f(u) = 0. Taking into account the previous lemma
we obtain f ≡ 0. The proof of the lemma is now complete. 2

Theorem 3.9. PQψ,γ(G) = Q(G). So, quadratic functional equation (3.1) is
(ψ, γ)–stable on G = T (2, K).

Proof. The proof follows from two previous lemmas. 2

3.3 G=T(3,K)

By some elementary computations we have 1 b c
0 1 a
0 0 1

−1

=

 1 −b ab− c
0 1 −a
0 0 1

 .
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Hence 1 b c
0 1 a
0 0 1

−1  1 b1 c1
0 1 a1

0 0 1

 1 b c
0 1 a
0 0 1

 =

 1 b1 c1 + ab1 − ba1

0 1 a1

0 0 1

 .
Then  x 0 0

0 y 0
0 0 z

−1  1 b1 c1 + ab1 − ba1

0 1 a1

0 0 1

 x 0 0
0 y 0
0 0 z


=

 1 x−1yb1 x−1zc1 + x−1zab1 − x−1zba1

0 1 y−1za1

0 0 1

 .
Lemma 3.10. Let f ∈ PQψ,γ(G), then f

∣∣
TU(3,K)

≡ 0.

Proof. Let

g =

 1 b1 c1
0 1 a1

0 0 1

 .
Let us check that a class of conjugate elements containing g contains matrix
g2 too. To do this we need to show that for any a1, b1 and c1 one can choose
numbers x, y, z, a, b such that the equality 1 x−1yb1 x−1zc1 + x−1zab1 − x−1zba1

0 1 y−1za1

0 0 1

 =

 1 2b1 a1b1 + 2c1
0 1 2a1

0 0 1


holds. Indeed, if a1 = b1 = 0 we can put z = 2x. If a1 = 0, b1 6= 0 we can put
y = z = 2x, a = 0, and if a1 6= 0, b1 6= 0 we can put y = 2x, z = 4x, b = 0,
a = a1b1−2c1

4b1
.

So, we see that g is conjugate to g2. It follows that f(g) = f(g2) = 4f(g),
and f(g) = 0. This completes the proof of the lemma. 2

Arguing as in the case G = T (2, K) we get the following theorem

Theorem 3.11. PQψ,γ(G) = Q(G), that is, the quadratic functional equation
(3.1) is (ψ, γ)–stable on G = T (3, K).
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4. Embedding

Let G be an arbitrary group and f ∈ PQψ,γ(G). Hence for nonnegative
numbers δ and θ and for any x, y ∈ G, we have

|f(xy) + f(xy−1)− 2f(x)− 2f(y)| ≤ δ + θ [ψ(γ(x)) + ψ(γ(y))]. (4.1)

Let b, c, u, v be elements of G and x = bu and y = cv. We will use notation ab

for element b−1ab. From (4.1), we get

|f(bcucv) + f(bc−1(uv−1)c
−1

)− 2f(bu)− 2f(cv)|
= |f(bucv) + f(buv−1c−1)− 2f(bu)− 2f(cv)|

+θ [ψ(γ(bu)) + ψ(γ(cv))].

Therefore

|f(bcucv) + f(bc−1(uv−1)c
−1

)− 2f(bu)− 2f(cv)| (4.2)

≤δ + θ [ψ(γ(bu)) + ψ(γ(cv))]

and if b = c, then

|f(c2ucv) + f((uv−1)c
−1

)− 2f(cu)− 2f(cv)| (4.3)

≤δ + θ[ψ(γ(cu)) + ψ(γ(cv))].

Since f ∈ PQψ,γ(G) and c2ucu = (cu)2, we obtain

f(c2ucu) = 4f(cu). (4.4)

Letting c2 = 1 and u = 1 in (4.3) implies

|f(v) + f((v−1)c
−1

)− 2f(cv)− 2f(c)| ≤ δ + θ [ψ(γ(c)) + ψ(γ(cv))].

Since c is an element of finite order and f ∈ PQψ,γ(G), f(c) = 0 and from the
last inequality, we have

|f(v) + f((v−1)c
−1

)− 2f(cv)| ≤ δ + θ [ψ(γ(c)) + ψ(γ(cv))]. (4.5)

By Lemma 3.4, we have f(v) = f(v−1) = f((v−1)c
−1

) and hence (4.5) yields

|2f(v)− 2f(cv)| ≤ δ + θ [ψ(γ(c)) + ψ(γ(cv))]
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which is

|f(v)− f(cv)| ≤ δ

2
+
θ

2
[ψ(γ(c)) + ψ(γ(cv))]. (4.6)

From (4.4) and (4.6) we have

|f(ucu)− 4f(u)| ≤ 2δ + 2θ [ψ(γ(c)) + ψ(γ(cu))] (4.7)

Next, letting c2 = 1, v = 1, into (4.3), we get

|f(uc) + f(uc)− 2f(cu)| ≤ δ + θ [ψ(γ(cu)) + ψ(γ(c))]

and by Lemma 3.4 the latter reduces to

|f(u)− f(cu)| ≤ δ

2
+
θ

2
[ψ(γ(cu)) + ψ(γ(c))]. (4.8)

From (4.8), it follows

|4f(u)− 4f(cu)| ≤ 2δ + 2θ [ψ(γ(cu)) + ψ(γ(c))].

Now taking into account (4.4) and relation c2 = 1 we get

|f(ucu)− 4f(u)| ≤ 2δ + 2θ [ψ(γ(cu)) + ψ(γ(c))]. (4.9)

Lemma 4.1. Let G be an arbitrary group and f ∈ PQψ,γ(G). For u, c ∈ G,
let c2 = 1 and ucu = uuc. Then

f(ucu) = 4f(u). (4.10)

Proof. For any n ∈ N, we have

n2|f(ucu)− 4f(u)| = |f((ucu)n)− 4f(un)|
= |f((un)cun)− 4f(un)|
≤ δ + θ [ψ(γ(cun)) + ψ(γ(un))]

≤ δ + θ [ψ(γ(c)) + ψ(γ(un)) + ψ(d) + ψ(γ(un))]

≤ δ + θ [ψ(γ(c)) + ψ(d) + 2ψ(n( γ(u) + d))]

≤ δ + θ [ψ(γ(c)) + ψ(d) + 2nψ(γ(u) + d)].

Hence

|f(ucu)− 4f(u)| ≤ δ

n2
+

θ

n2
[ψ(γ(c)) + ψ(d)] + 2 θ

n

n2
ψ(γ(u) + d)].
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Therefore, by letting n→∞, we see that

f(ucu) = 4f(u)

and the proof is now complete. 2

Suppose that A and B arbitrary groups. For any b ∈ B let A(b) be
the group isomorphic to A under isomorphism a → a(b). We denote by
H = A(B) =

∏
b∈B A(b) the direct product of the group A(b). Cearly, if

a(b1)a(b2) · · · a(bk) is some element of H, then for b ∈ B the mapping

b∗ : a(b1) a(b2) · · · a(bk)→ a(b1b) a(b2b) · · · a(bkb)

is an automorphism of H, and the mapping b → b∗ is an embedding of B in
AutH. Hence, we can form a semidirect product G = B ·H. This group is the
wreath product of the groups A and B and will be denoted by G = A oB. We
shell identify the group A with subgroup A(1) of H, where 1 is unit element
of B. Thus, we may assume that A is a subgroup of H.

Let γA : A → R+
0 and γA(xy) ≤ γA(x) + γA(y) for any x, y ∈ A. Let

γB : B → R+
0 such that γB(xy) ≤ γB(x) + γB(y) for any x, y ∈ B. Let γ be

an extension of the function γA from A to H defined by

γ(a1(b1) a2(b2) · · · am(bm)) =
m∑
i=1

γA(ai), (4.11)

γ(b · a1(b1) a2(b2) · · · am(bm)) = γB(b) + γ(a1(b1) a2(b2) · · · am(bm)). (4.12)

Let C be the group of order 2 with generator c. Consider the group A oC.

Lemma 4.2. If for some a1, b1 ∈ A we have equality

|f(a1b1) + f(a1b
−1
1 )− 2f(a1)− 2f(b1)| = δ > 0,

then there exist x, y ∈ H such that

|f(xy) + f(xy−1)− 2f(x)− 2f(y)| = 4δ.

Proof. Let u = a1b1. Then ucu = uuc. Using relation (4.10) we get

f(a1a
c
1b1b

c
1) + f(a1a

c
1(b
−1
1 )cb−1

1 )− 2f(a1a
c
1)− 2f(b1b

c
1)

=f(a1b1a
c
1b
c
1) + f(a1b

−1
1 ac1(b

−1
1 )c)− 2f(a1a

c
1)− 2f(b1b

c
1)

=4f(a1b1) + 4f(a1b
−1
1 )− 8f(a1)− 8f(b1)

=4δ.

The proof is completed. 2
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Theorem 4.3. Let A be a group and γ : A → R+
0 be a function satisfying

relation γ(xy) ≤ γ(x) + γ(y) for all x, y ∈ A, then A can be embedded into a
group G such that the equation (3.1) is (ψ, γ)-stable on G.

Proof. Let Ci denotes a group of order two for any i ∈ N. Define function γ
on Ci as zero function. Consider a chain of groups:

A1 = A, A2 = A1 o C1, A3 = A2 o C2, . . . , Ak+1 = Ak o Ck, . . .

Now define the following chain of embeddings:

A1 → A2 → A3 → · · · → Ak+1 → . . . (4.13)

by identifying Ak with Ak(1) – a subgroup of Ak+1. Let G be the direct limit
of (4.13). Then G = ∪

k∈NAk and

A1 ⊂ A2 ⊂ · · · ⊂ Ak ⊂ Ak+1 ⊂ . . . . . . ⊂ G.

Let us extend function γ from group Ai onto Ai+1 by the rule mentioned in
(4.11) and (4.12) ). Let f ∈ PQψ,γ(G). Suppose that there are a1, b1 in A1,
such that

|f(a1b1) + f(a1b
−1
1 )− 2f(a1)− 2f(b1)| = δ > 0.

Put a2 = a1a
c1
1 , b2 = b1b

c1
1 . Then by Lemma 4.2 we get

|f(a2b2) + f(a2b
−1
2 )− 2f(a2)− 2f(b2)| = 4δ.

Furthermore, for any k ∈ N, we set ak+1 = aka
ck
k , bk+1 = bkb

ck
k . Using

Lemma 4.2 k times, we obtain

|f(ak+1bk+1) + f(ak+1b
−1
k+1)− 2f(ak+1)− 2f(bk+1)| = 4kδ.

From the way of extending γ (see (4.11) and (4.12)), it follows that

γ(a2) = γ(a1a
c1
1 ) = γ(a1) + γ(ac11 ) = 2γ(a1).

Similarly, γ(b2) = 2γ(b1). Using induction on k, we get γ(ak+1) = 2kγ(a1) and
γ(bk+1) = 2kγ(b1).

Now if r and θ nonnegative numbers, such that for any x, y ∈ G, we have
relation

|f(xy) + f(xy−1)− 2f(x)− 2f(y)| ≤ r + θ[ψ(γ(x)) + ψ(γ(y))],
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then

4kδ = |f(ak+1bk+1) + f(ak+1b
−1
k+1)− 2f(ak+1)− 2f(bk+1)|

≤ r + θ [ψ(γ(ak+1)) + ψ(γ(bk+1))]

= r + θ [ψ(2k γ(a1)) + ψ(2k γ(b1))]

≤ r + 2k θ [ψ(γ(a1)) + ψ(γ(b1))].

Therefore

δ ≤ r

4k
+ θ

2k

4k
[ψ(γ(a1)) + ψ(γ(b1))].

Because of the last relation is true for any k ∈ N we obtain δ = 0. So
f
∣∣
A1
∈ Q(A1). Similarly, we verify that f

∣∣
Ak
∈ Q(Ak) for any k ∈ N. Therefore

f ∈ Q(G). The proof is now complete. 2
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[9] V. A. Făiziev and P. K. Sahoo, On the space of (ψ, γ)–pseudo-Jensen map-
ping on groups,Nonlinear Funct. Anal. And Appl., vol.11, no.5, (2006),
pp 759–791.
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