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1. Introduction

In 1940 to the audience of the Mathematics Club of the University of Wisconsin
S. M. Ulam presented a list of unsolved problems [20]. One of these problems
can be considered as the starting point of a new line of investigations: the
stability problem. The problem was posed as follows. If we replace a given
functional equation by a functional inequality, then under what conditions
we can say that the solutions of the inequality are close to the solutions of
the equation. For example, given a group G, a metric group (Ga,d) and a
positive number e, the Ulam question is: Does there exist a 6 > 0 such that
if the map f : Gi — Gy satisfies d(f(xy), f(x)f(y)) < § for all z,y € Gy,
then a homomorphism 7' : Gy — G9 exists with d(f(x),T(z)) < € for all
x,y € G177 In the case of a positive answer to this problem, we say that
Cauchy functional equation f(zy) = f(z)f(y) is stable for the pair (G1, G3).
The interested reader should refer to [20] and [13] for an account on Ulam’s
problem.

Hyers [12] proved the following result to give an affirmative answer to
Ulam’s problem. Let X,Y be Banach spaces and let f : X — Y be a mapping
satisfying

1f(z+y) = flo) = fWll <e

for all z,y in X. Then there exists a unique additive map A : X — Y satisfying
1f(z) — Alx)[| < e

for all z in X. This pioneer result of Hyers can be expressed in the following
way: Cauchy’s functional equation is stable for any pair of Banach spaces.

Aoki [1] proved a generalized version of the previous result which permitted
the Cauchy difference to become unbounded. That is, he assumed that

Lz +y) = fl@) = fW I <e(lllP +llyll")  forall z,yeX,

where € and p are constants satisfying ¢ > 0 and 0 < p < 1. By making use
of the direct method of Hyers [12], he proved in this case too, that there is an
additive function 7" from X into Y given by the formula

T(x) = lim Q%f@"x)

such that
[T (z) — f(@)]| < kellz]],
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where k depends on p as well as €. Independently, Th.M. Rassias [17] in
1978 rediscovered the above result and proved that the mapping 7' is not
only additive, under certain conditions, it is also linear. Rassias’s paper [17]
provided an impetus for a lot of activities in stability theory of functional
equations. The first paper to extend Rassias’s result to a class nonabelian
groups and semigroups was [8].

The quadratic functional equation

flay) + flay™) =2f(x) + 2f(y) (1.1)

where f is defined on a group G and takes its values from a vector space F,
is an important equation in the theory of functional equations and it plays an
important role in the characterization of inner product spaces [7]. The stability
of the quadratic functional equation (1.1) was first proved by Skof [19] for
functions from a normed space into a Banach space. Cholewa [2] demonstrated
that Skof’s theorem is also valid if the relevant domain is replaced by an
Abelian group. Later, Fenyé [10] improved the bound obtained and Cholewa

from § to w (cf. [3)).

Theorem 1.1. Let G be an Abelian group and let E be a Banach space. If a
function f : G — FE satisfies the inequality

1f(z+y)+ fle—y) —2f(x) = 2f(W) <e
for some ¢ > 0 and for all x,y € G, then there exists a unique quadratic
function q : G — E such that

1f(z) = q(@)]] < 3+ £ (0)]])

1
3
for all z € G.

The above theorem can be expressed in the following way: The quadratic
functional equation is stable for the pair (G, E), where G is an Abelian group
and F is a Banach space. In the paper [4], the following result on Hyers-
Ulam-Rassias stability of quadratic functional equation on normed space was
obtained that generalized the results of Skof [19] and Cholewa [2].

Theorem 1.2. Let Ey be a normed space and Es a Banach space and let
f: By — FEy be a function satisfying inequality

f(x+y)+ flx—y)—2f(x) = 2f (W) < ¢(z,y) (1.2)

with either
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1. o(x,y) =+ 0(||z|[” +|lyl[P), p<2 z,yecX\{0} or
2. o(x,y) = 0(||z|P+[ly|["), p>2,z,yecX

for some £,0 > 0. Then there exists a unique quadratic map Q) : Ey — Fs
such that

20
4 —2p

(e + [[FO)) + |=|lP,  x € Ex\{0}

W —

1f(z) = Q)] <

i case 1 and
20

1£(2) - Q)| < 55—

||$||p’ HARS El
n case 2.

Various works on stability of the quadratic functional equation can be
found in Skof [19], Cholewa [2], Feny6 [10], Ger [11], Czerwik [3], [4], [5], [6],
Jung [14], [15], Jung and Sahoo [16], and Rassias [18]. In all these works, the
stability of the quadratic equation or a more general quadratic equation was
treated for the pair (G, F') when G is an Abelian group. In the present paper,
we consider the stability of the functional equation (1.1) for the pair (G, E)
when (G is an arbitrary group and E' is a real Banach space. The Skof’s result
[19] is a particular case of this result. We also show that any group can be
embedded into a group G such that the functional equation (1.1) is stable on
G.

In this paper, we generalize Theorem 1.2 in two different ways. First, we
use a more general term on the right hand side of (1.2), namely a+0 [¢(v(z))+
¥(v(y))], where a and 6 are positive constants, v : G — (0,00) is a function
satisfying some special conditions to be discussed in the next section, and
¥ 1 [0,00) — (0,00) is an increasing subadditive function. Second, we replace
the domain of the function f by some of noncommutative group GG. The paper
is organized as follows: In Section 2, we present some preliminary results that
will be needed to prove some results in the subsequent sections of this paper.
In Section 3, we prove the (1, v)-stability of quadratic functional equation on
abelian group, and nonabelian groups such as UT'(3, K'), T'(2, K), and T'(3, K),
where K is an arbitrary field. Among other results, we prove that any group A
can be embedded into a group G such that the quadratic functional equation
is (¢, y)-stable on G.
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2. Preliminary results

We will denote the set of real numbers by R and the set of natural numbers
by N. Let R = [0,00) be the set of non-negative numbers and R* = (0, 0o)
be the set of positive numbers. Let G be an arbitrary group. Throughout
this paper, the function ¢ : R{ — R* is considered to be an increasing and
subadditive function, that is 1) satisfies the conditions:

1. Y(t)) < (ty) for all ty,ty € R whenever t; < to, and
2. (th +ta) < P(t1) +(t2) for all ty,ty € RY.
Throughout this paper, by v we will mean a function v : G — R satisfying
1. y(z7!) = y(z) for all z € G, and
2. y(wy) <v(x) +v(y) +dforal z,y € G

for some nonnegative real number d. It is clear that for any x € G and any
m € N the following inequalities hold

(&™) < Y(my(x) +md) <my(y(x) +d) < my(y(z) +mi(d).  (2.1)

Definition 2.1. Let G be a group and E a Banach space. The function f :
G — FE is said to be a (v, ~)-quasiquadratic mapping if there are nonnegative
numbers a and 0 such that for any x,y € G

1f(@y) + flzy™) = 2f (@) = 2f W)l € a+0[b(v(2)) + (v ()] (2:2)

holds. The set of all (v, ~y)—-quasiquadratic mappings will be denoted by the set
KQy(G, E).

Clearly, the set of all (¢, v)-quasiquadratic mappings, KQy (G, E), is a
linear space.

Lemma 2.2. Let f € KQy~(G, E) be a (¢,7)-quasiquadratic mapping. Then
for any m > 2 there are nonnegative numbers c,, and 0,, such that

1f(@™) = m*f (@)l < em + Om ¥ (y(2)), Yz eEG. (2.3)
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Proof. We will prove this lemma by induction on m. By letting y = x in
(2.2), we obtain

If(22) + f(1) — 4f(2)|| < a+209(y(z)) Vz€G.

Therefore

I£(@*) = 4f (@) < a+ [fD)+204(y(x)) VYzeG.

If we put c2 = a+ ||f(1)]| and 6, = 26 in the last inequality, then we get

(@) —4f ()| < ca +020(y(x))  Va€QG.

Replacing z by 2™ and y by z in (2.2), we obtain

1 @™ + fa™) = 2f (™) = 2f ()] < a+ O [(v(2™)) + ¥ (v(2))]

for all z € G. Using (2.1) in the last inequality, we see that

™)+ fa™ ) =2 (™) =2f (2)|] < a+mOp(d)+0 [m(y(x))+¢(v(z))]
which is

1 (&™) + fla™) = 2f(a™) — 2f (2)| (2.4)
<a+mby(d)+0m+ 1] (y(z))

for all z € G. Suppose that (2.3) has been already established for 2 < m < k.
Let us check it for k£ + 1. From (2.4), we have

£ @) + f@*Th) = 2f (%) = 2f(2)]| < a+ kOy(d) + Ok + e (v(2)).

Using (2.3) in the last inequality, we see that

1) + (k= 12 f(2) — 26 (x) — 2f ()]
<a+ kOU(d) + 0k + 10(1(2)) + cior + Bertb(1(2)) + 25 + 204 Y (7()).

Therefore

1f (@) = (k +1)*f (@)
<a+k0Y(d) 4 1+ 2¢, + [0(k + 1) + Op_1 + 20, L (y(x)).
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Letting Ck+r1 = Q@ + k?@l/)(d) + Ccp1 + QCk and 9k+1 = Q(k) + 1) -+ Qk—l —+ QQk
we obtain the asserted inequality (2.3) and the proof of the lemma is now

complete. OLet
Bl E=l N
pr(k) = (ﬁ) and (k) =) (E) . (2.5)
i=0 1=0

Lemma 2.3. Let f € KQyu~(G, E) and m € N with m > 2. For any k € N
the inequality

(2.6)

< () + () O () + % i () 3(2)

holds. Here ¢, and 0, are nonnegative numbers, m,, (k) and p,, (k) are numbers
as defined in (2.5), and 0 < r,,(n) < 1.

Proof. From Lemma 2.2 it follows that

Cm Hm

< 5+ 5 v((@). (2.7)

~—m2 m

|rem - fa)

So, 7m(1) = 0. Suppose that (2.6) has been already established for k& =
1,2,...,n. Let us check it for K = n + 1. Using the induction hypothesis, we
have

fa™) = f(x)

< (1) ) i) + % ) 0 2).

Substituting 2™ for x, we get

< )+ 0(d) B (0) + 2 () 0 (27)).

1

m2n

f@™) = fam)
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Hence using (2.1), we obtain

C 1 9m

gﬁ pm(n) +1(d) 0, rm(n)w + i Tm(n) m(y(x) + d).

1 mn+1 1
)

Wf(x T2 (™)

From the last inequality and (2.7), we obtain

1 nt1
| ™) - 160

g,

< paln) + ()0 #+mwm<n>mw<<>+d> by O

:T%Z (1) + C_w; +1(d) O, 7“7,;”# + % Tm(n) m(y(x) +d) + % Y(v(@))
0

[ ] e v e [Fnl) y T] ) ) O

1 mn+1
men (@)

|-

= g+ 1)+ 0@ 0 | 254 T2 |41 22 00

Put 7,(n + 1) = rn(n) -5 + —5 ™, (n) then it is clear that 0 < r,(n+1) <1
and the proof of the lemma is complete. O

Lemma 2.4. Let f € KQyu (G, E) be a (¢,7)-quasiquadratic mapping. For
anym > 2 and any x € G, the sequence {ﬁ (xmk)};ozl s a Cauchy sequence
with

f() = lim —f( . (2.8)

k%oom
Proof. Let .
(o] 1 (e.) 1 1
m = , d = — . 2.9
w=Sam =3 (G) @

Then by (2.7) and (2.9), we have

| = 1) | < S+ 0@ 00+ 2 00

m2n
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Substituting 2™ for z in the last inequality, we get

k

\‘ L) - fam)

m2n

m em k
<+ () O+~ B (y(2™))
< O () O+ B () T B ()

and therefore

1 mn+k 1 mk
Wf@ ) — Wf(x )

Oy Cmy ¢(d) em ﬁm em k ﬁm em k
Cm, 1 0 0

< —5irs Om + U D —5 + —5 B 0(d) + —5 B (7 (@)

From the latter relation it follows that the sequence {ﬁ f (xmk)}zozl is a
Cauchy sequence, and therefore has a limit which we denote by f,,(x). This

completes the proof of the lemma. |
Let 9
Cm m

Let 6, (z) = am + b (y(x)). Then

Om(2Y) = A + b Y(y(2Y))
< apm + by Y (7 (7)) + b V(V(y)) + b Y (d)
< () + 0 (y) + b ¥(d)
=2 + by (d) + b [ (v(2)) + Y (v(y))].

Similarly
Om(y™") < 2am + b (d) + b [U(7(2)) + ¥ (v(y))].
From (2.6) it follows that

HL (@) = f@)|| < am +bn v (3(2)), (2.11)

m2k

and letting £ — oo, we have

[fon(2) = f(@)]] < O ().
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Lemma 2.5. For any m > 2, the function f,,, defined in (2.8), belongs to the
set KQyu (G, E).

Proof. Indeed, for any x,y € GG, we have

[ () + frnlzy™) = 2fm(z) = 2fm(v)]|
<||f(zy) + flay™) = 2f(x )—2f( )+ N f(zy) — flzy)

[ fmzy™) = flay™ )| + 20 fn(2) = f@)]| + 2[ fn(y) = FW)II
<a+0[(v(z)) + V(v (Y)] + dmlzy) + omlzy )+25 (@) + 26, (y)
<a+0[W(v(z)) + Y (y(Y)] + 2am + b (d) + b [ (v(2)) + V(v (y))]

+ 20y, + bptp(d) + b [t ((2)) + (7 (y))]

+ 2a,, + 20,0 (Y(2)) 4 2am, + 20,10 (v (y)).

<a + 8am + 2b,Y(d) + (0 + 4by) [ (v(2)) + P (v(y))]-

Since a + 8a,, + 2b,,¢(d) and 6 + 4b,, are nonnegative, f,, € KQy (G, E).
This completes the proof of the lemma. a

Lemma 2.6. The function f,,, defined in (2.8), satisfies f,, = fo for all
m > 2.

Proof. From the definition of f,, it follows that for any £ € N and = € G the
relations f,(z™) = m2* f,,(z) and fo(22") = 22% f,(2) hold. From Lemma 2.5,
we see that f,, fo € KQyu~(G, E). Hence, by Lemma 2.4, function

¢(ZE) = lim _fm( )

n—oo 221

is well defined and belongs to the set KQy (G, E). Let c and d be nonnegative
numbers such that

[6(x) = fm(@)[| < c+dip(v(2)),  VeeG. (2.12)
From (2.11) it follows
[o(x) = f@) < e+ am+ (d+bn)P(v(2),  Vred. (2.13)
Taking into account relation

1f2(x) = f(2)[| < a2 + bab(v(2)), V2 eG
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we get

lp(z) = fo(@)|| < ¢+ am + az + (d + by, + b2) Y(y(x)), Veed. (2.14)

Therefore

| fn(2) = fo(2)]| < @ + ag + (b + b2) V(y(x)),  Vzeq.

It is clear that for any ¢ € N we have

4

oa™) =m¥o(x), oY) = 2% (),

hence, from (2.12) we have

6(2>) = fo(a®)]| < ¢+ am + ag + (d + by + by) w(y(2*)),
2|¢(x) — fo(2)|| < ¢+ am + az + (d + am + a2) 2°Y(y(z) + d),

l
I6(2) ~ fal)| < B 4 (044 ) e 9l (0) + d),

and we see that ¢ = f,. Similarly we check that ¢ = f,,. Therefore f,, = fs.
This completes the proof. O
Denote by f a function defined by the formula

Flo) = Jim 4z £, (2.15)

Definition 2.7. A (¢, ~)—quasiquadratic mapping ¢ : G — E is said to be
(v, v)—pseudoquadratic mapping if ¢ satisfies p(z™) = np(x) for all x € G
and alln € N. The set of all (1, v)-pseudoquadratic mappings will be denoted
by the set PQy~(G, E).

From Lemma 2.6 we obtain the following corollary.

Corollary 2.8. The function f, defined by (2.15), is a (v, v)-pseudoquadratic
mapping and satisfies the following relation

|y = 1o

m?2k

<t + b (v())- (2.16)

Definition 2.9. By B, (G, E) we donote the set of all functions f such that
if f belongs to By (G, E), then there are nonnegative numbers a and b such
that

[f (@)l < a+by(y(z)) (2.17)
forall z € G.
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Theorem 2.10. The linear space KQy~(G,E) of all (¢,7)-quasiquadratic
mappings can be decomposed as the direct sum of PQy (G, E) and By, (G, E),
that is KQy (G, E) = PQy~(G, E) ® By (G, E).

Proof. It is easy to see that PQy (G, E) and By, (G, E) are linear subspaces
of KQy~(G,E). Let us show that PQy (G, E) N By (G, E) = {0}. Indeed,
if f € PQyu~(G,E)N By (G, E), then using (2.17) we have for any k € N

1£ @) < a+bu(r(™)
which by (2.1) and the fact that f is (¢, y)-pseudoquadratic implies
I f @) < a+b2"Y(y(2) + d).

Rewriting the last inequality, we have

15 < et () +d),

and taking the limit as & — oo we see that f(x) = 0.
Let f be an arbitrary element of KQy,(G,E), then by Corollary 2.8,

fe PQy~(G,E). Again from Corollary 2.8 we see that f — fe BQyu~ (G, E).
Now the proof is complete. |
3. Stability

Definition 3.1. Let v : Ry — RT and v : G — R{ be the functions as stated
in the beginning of Section 2, and let f : G — E. The quadratic equation

flay) + flay™) —2f(x) —2f(y) =0 (3.1)

is said to be (V,~y)-stable if for any function ¢ satisfying condition

le(zy) +@(xy™") = 20(x) — 20(y)|| < a+b(v(x)) + L (v(y))]

there ezists a solution g of the equation (3.1), such that

le(x) = g(@)]| < e+ did(y(x))

for some nonnegative numbers ¢ and d and any x € G.



On (v, y)-Stability of Quadratic Equation on Groups 323

The set of all solutions of the quadratic functional equation (3.1) will be
denoted by Q(G, F). Clearly, Q(G, E) is a linear space.

Proposition 3.2. The quadratic equation (3.1) is (1, )-stable if and only if
PQu~(G,E)=Q(G, E).
Proof. The proof follows from Theorem 2.10. |

Lemma 3.3. The quadratic equation (3.1) is (¢,~)-stable for any abelian
group G.

Proof. Let G be an abelian group. Thus (zy)? = zPy? for any p € N and for
any z,y € G. Let f € PQy (G, E). Then we have

I f((xy)?) + f((wy™1)P) = 2 (=) = 2 (vP) |
=[| f(aPy?) + f(2P(y~")P) = 2f(a?) = 2f (2P) ||
<a+b[Y(y(a?)) + Y (v(y"))]
<a+b[pp(v(z)+d) +py(y(y) +d)].

Therefore

PP flay) + flay™") = 2f(z) = 2f(y) |
<a+bp[Y(y(z)+d)+¢¥(v(y) + d)]

which is

| flzy) + flay™") —2f(x) — 2f(y) |

b
2 0@ +d) +e(y) + d)]
Letting p — oo in the last inequality, we have

flazy) + fley™) = 2f(x) = 2f(y) = 0.

Hence f € Q(G, E). By Proposition 3.2 the equation (3.1) is (¢, v)-stable and
the proof of the lemma is complete. |

<

Lemma 3.4. Let f € PQy~(G,E). Then for any x,y € G the following
relations hold:

C f@Th) = flo),
2. flzy) = flyz).



324 Valerii A. Faiziev and Prasanna K. Sahoo

Proof. 1. Since f € PQy (G, E), we have

| f)+ fly™) =2f(1) =2f (W) | <a+byp(y(1) +byp(v(y))

Hence

1 F™) = f) | <a+2)FQ)] +bw(v(1) +b(v(y))

Therefore, for any n € N, we have

| fy™) = fW") [ <a+2[|f(D+0¢(v(1)) + b (v(y"))
and

at 2|/l +00((1)  ,n b(y(y) + d).

I fy )= fly) |l <

Letting n — oo in the last inequality, we see that f(y=!) = f(y).
2. Since f € PQy (G, E), we obtain

| flzy) + flay™) = 2f(2) —2f(y) || < a+bw(v(x)) + (v (y))].

Interchanging = with y in the last inequality, we get

| flyz) + flyz™") = 2f(y) = 2f () | < a+b[w(v(x) +(v(y)).

Using the fact that f(z™1) = f(z) for all z € G, we get from the last inequality

| flyx) + fley™h) = 2f(y) —2f (@) | < a+b[(y(x)) + L (y(y))]-

Therefore

I fxy) = f(y) || < 2a+26[9(7(2)) + (7 ()]

Changing z by y 'z, we get

| fly~tey) — fz) || < 2a+2b[0(v(y ') + (v (y))]
<2a+2b WJ(’V( N+ (@) +d) + (7))
< 2a+ 2¢(d)

+
@‘
=
=
S

SN—
SN—
+
=
=
Ny

S—
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Therefore for any n € N, replacing x by 2" we have

Iy~ amy) = (") || < 2a+ 2¢(d) + 4b [(v(2")) + 9 (7(y"))]

which simplifies to

n?|| fly~wy) — f(2) || < 20+ 2¢(d) +4bn [ (y(x) + d) +b(y(y) + d)].
Hence

I ey) — £ | < 22 200

4b
D 2 )+ d) + () + )
Taking n — oo in the last inequality, we see that f(y 'zy) = f(x) which is
f(zy) = f(yz), and the proof of the lemma is now complete. O

Theorem 3.5. Let £y and Ey be Banach spaces. Then quadratic equation (3.1)
is (¢, 7y)-stable for the pair (G; Ey) if and only if it is (1, ~y)-stable for the pair
(G; Ea).

Proof. Let E be a real Banach space and R be the set of reals. Suppose
that equation (3.1) is (¢, )-stable for pair (G; E) and it is not (¢, y)-stable
for pair (G,R). Then there is nontrivial (1, ~y)—pseudoquadratic mapping f
on G. By nontrivial (¢,v)—pseudoqudratic mapping we mean an element of
PQy (G, E) which in not quadratic mapping. Therefore for some a,b > 0 we
have

1 f(zy) + flay™) = 2f(z) = 2f () | < a+b[b(v(2)) + ¥ (v(y))]

for all z,y € G. Let e € F with |le]] = 1. Consider a function ¢ : G — E
defined by the formula ¢(z) = f(z) -e. It is clear that ¢ is nontrivial
(1, v)—pseudoquadratic E—valued mapping. Therefore we come to a contra-
diction. Now suppose that the equation (3.1) is (¢,~)-stable for the pair
(G,R), that is PQy~(G;R) = Q(G,R). Denote by E* the space of lin-
ear bounded functionals on F with norm topology. It is clear that for any
v € PQy~(G; E) and any A € E* function Aoy belongs PQy (G, R). Indeed,
let for nonnegative numbers a,b and any z,y € G the following relation is
fulfilled

lo(zy) +@(xy™") — 20(x) — 20(y)|| < a+b(v(x)) + P (v(y))].
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Then

IXop(zy) + Ao p(zy™) — 2X 0 p(z) — 2X 0 (y)|
=[Mp(zy) + Ap(zy™) = 20(x) — 20(y))|
<A@+ b (v(x)) + ©(v(v))])
=[[Alla+ [IAl b [ (v(2)) + 2 (v(9))].

It is clear that A o p(z%") = 4"\ o p(x) for any # € G and any n € N.
Therefore the function A o ¢ belongs to PQy~(G,R). Let f : G — E be a
nontrivial (¢, v)-pseudoquadratic mapping. Then there are =,y € G such that
flzy)+ flzy™')—2f(x)—2f(y) # 0. By Hahn-Banach theorem there is ¢ € E*
such that £(f(xy) + f(zy™') —2f(x) — 2f(y)) # 0. Hence, £o f is a nontrivial
(¢, v)-pseudoquadratic function on G. Thus we come to a contradiction and
the proof is complete. O

Due to Theorem 3.5 we can simply say that equation (3.1) is (¢, y)-stable
or not (¢, y)-stable on the group G, without mentioning a Banach space. From
now on in the case £ = R, we denote spaces KQy~(G,R), PQy~(G,R) and
Q(G,R) by KQy(G), PQy~(G) and Q(G), respectively.

3.1 G=UT(3,K)

Let K be an arbitrary field and K* its multiplicative group. Denote by G the
group UT(3, K') consisting of matrices of the form

1
0
0

O R

t
x|, x,yteK.
1

Now our goal is to establish (1, v)-stability of (3.1) on the group UT'(3, K). To
establish (v, v)-stability of (3.1) we need to show that PQ (G, E) = Q(G).
Denote by A, B, C' subgroups of (G, consisting of matrices of the form

100 1 b0 10 c
0lal|l, |O10], |010]|, abceRr
00 1 001 001

respectively. Denote by H a subgroup of G generated by B and C.
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Proposition 3.6. If ¢ € PQy (G, E), then ¢ has presentation of the form
o(x) = q(7(x)), where 7 : G — K x K is a homomorphism defined by the
formula

— (a,0)

\]
o O =
O =
— Q0

and ¢ € Q(K x K). Therefore PQy~(G) = Q(G) and equation (3.1) is
(¢, y)-stable on G.

Proof. Let ¢ € PQ,-(G). By Lemma 3.4, the function ¢ is invariant with
respect inner automorphisms of G. Hence, from relation

-1

1 b1 C1 1 b ¢ 1 b1 C1 1 b ba1 — bla +c
0 1 a 01 a 0 1 a [=1]01 a
0 0 1 0 01 0 0 1 00 1
it follows
1 b ¢ 1 b bay —bia—+c
© 01 a = 01 a ) (3.3)
0 01 00 1

Let us check that go} o =0. Let a and b be nonnegative numbers, such that

| o(zy) + elzy™") — 20(z) = 20(y) | < a+bY(y(z)) + Y(y(x))]

for all x,y € G. A subgroup of G generated by B and C' is an abelian group.
Therefore for any § € B and o € C' we have

p(af?) + p(a) — 2¢(aB) — 2¢(3) = 0. (3.4)
Let
1 b0 1 0 ¢
=101 0 and a=1010
0 0 1 0 01

and b # 0. Then from (3.3) it follows

o

(3.5)

o O =
O = o
e}

1 b6 0
@ 010 =
001

—_
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for any ¢ € R. So, p(af?) = p(3?) and (3.4) implies

e(6%) + (@) — 2¢(8) — 2¢(B) = 0.

Hence
4p(B3) + () = 2¢(8) — 2¢(8) = 0
which simplifies to
(o) = 0.

Therefore, go} o = 0. Now from (3.3) we obtain that ¢ is constant on any coset
of the group G by its subgroup C. Hence, there is ¢ € Q(K x K) such that
o(z) = q(7(x)) and, hence, p € Q(G). The proof is complete. O

3.2 T(2,K)

Elementary computations show that
a ¢]! et =%
0 b L0 bt

E R I A B

Lemma 3.7. Let
Tz
0 y

be an element of T'(2, R) such that x # y. Then there exist a,b,c,a, 3 such

Therefore

that
a c] '[a 0 a c r oz
o) Los)las]-[as) e
Proof. The proof follows from letting o« = x, § =y, a =1, and ¢ = % in
(3.6). O

Lemma 3.8. If f € PQy(G,E) and f(g) = 0 for any diagonal matriz g,
then f = 0.
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Proof. Let
T z 1 0
UZ{O a:] and UZ{O _1}
Since f € PQy~(G, E), we have

|flzy) + flay™) —2f(x) = 2f(2)| < p+qw(v(2) + P (v(y))].

for some positive numbers p,q > 0. For any n € N, replacing = by u™ and y
by v, we obtain

[f(u™v) + fumv™h) = 2f(u") = 2f(v)| < p +q [ (v(u")) + D(v(v))].

Since v is an element of order two and f has the property f(z") = n?f(z) for
any n € Z and any z € G we get f(v) = 0. Now by previous lemma we have
f(u™v) = 0. Hence

2|f(uh)] <p+qlp(y(u®) + (v (v)].

Since f € PQy~(G, E), we have f(u") = n* f(u) and hence the last inequality
yields

207()] < L+ q | () +d) + —0(0)]

So, letting n — oo, we have f(u) = 0. Taking into account the previous lemma
we obtain f = 0. The proof of the lemma is now complete. O

Theorem 3.9. PQy.(G) = Q(G). So, quadratic functional equation (3.1) is
(v, 7)-stable on G = T(2, K).

Proof. The proof follows from two previous lemmas. O

3.3 G=T(3,K)

By some elementary computations we have
1 b ! 1 —b ab—c
01 =10 1 —a
0 0 0 0 1

— Q2 O
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Hence
1 b ¢ ! 1 bl C1 1 b ¢ 1 b1 cl+ab1—ba1
01 a 01 a 01 al=101 ai
0 01 0 0 1 0 01 0 0 1
Then
(2 0 0] '[1 b co+abi—bay [ [a 00
0y O 0 1 a; 0 v O
| 0 0 =2 0 0 1 0 0 =z
[ 1 27'yby a7 'zer + 2 zaby — 27 2bay
=10 1 Yy tzaq
| 0 0 1
Lemma 3.10. Let f € PQy(G), then f‘TU(S K = 0.
Proof. Let
1 bl C1
g = 0 1 aq
0 0 1

Let us check that a class of conjugate elements containing g contains matrix
g® too. To do this we need to show that for any a;, b; and ¢; one can choose
numbers z,v, 2z, a, b such that the equality

1 a7 Yyby a7 tze + o tzaby — 27 2bay 1 2by aiby +2¢;
0 1 Yy lzay =10 1 2a,
0 0 1 0 0 1

holds. Indeed, if a; = by = 0 we can put z = 2x. If a; =0, by # 0 we can put
y=z=2x,a=0,and if a; # 0, by # 0 we can put y = 2z, z = 4z, b = 0,

a1b1—2c1

a = M=t
So, we see that g is conjugate to g®. It follows that f(g) = f(¢*) = 4f(g),
and f(g) = 0. This completes the proof of the lemma. O

Arguing as in the case G = T'(2, K) we get the following theorem

Theorem 3.11. PQy(G) = Q(G), that is, the quadratic functional equation
(3.1) is (v, 7)-stable on G =T (3, K).
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4. Embedding

Let G be an arbitrary group and f € PQy,(G). Hence for nonnegative
numbers 0 and ¢ and for any z,y € G, we have

|f(zy) + flay™") —2f(x) = 2f ()| <0+ 0[0(v(2) + (v (v)].  (41)

Let b, ¢, u, v be elements of G and = bu and y = cv. We will use notation a’

for element b~'ab. From (4.1), we get

[f (beuv) + f(be™ (uv™)"") = 2f (bu) — 2 (cv)|
= |f(bucv) + f(buv=tc™) — 2f(bu) — 2f(cv)|
+0 [ (v(bu)) + P(y(cv))].

Therefore

| f(beusv) + f(be (uv™)) — 2f (bu) — 2f(cv)] (4.2)
<6+ 0 [(v(bu) + B((cv))]

and if b = ¢, then

[f(Putv) + f((uv™)) = 2f(cu) = 2f(cv)] (4.3)
<6 + [y (v(cu)) + ¢ (y(ev))].

Since f € PQy,(G) and *uu = (cu)?, we obtain
f(uu) = 4f(cu). (4.4)
Letting ¢ =1 and v = 1 in (4.3) implies
@)+ F(0)) = 2f(cv) = 2f()] < 5+ 0[(v(e) + D(v(ev))].

Since c is an element of finite order and f € PQy~(G), f(c¢) = 0 and from the
last inequality, we have

[F(0) + F((0)) = 2f(ev)] <6+ 0[(v(c) +v(v(ew))].  (45)
By Lemma 3.4, we have f(v) = f(v™") = f((v™1)¢ ") and hence (4.5) yields

2f(v) = 2f(cv)| <0+ 0[p(v(c)) + P (y(cv))]
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which is
1)~ F(e)] < 5 + 2 [Wr(e) + ((eu))] (4.6
From (4.4) and (4.6) we have
| (uu) —4f (u)] <26 +20[9(7(c)) + ¢ (v(cu))] (4.7)

Next, letting ¢> = 1, v = 1, into (4.3), we get
[f(u®) + f(u®) = 2f(cu)| < 6+ 6 [ (v(cu)) +(v(c))]

and by Lemma 3.4 the latter reduces to

7(u) — fleu)] < 3 + 3 [Wrtew) + v(e)] (1)

From (4.8), it follows

|4f (u) = 4f (cu)| <20 420 [y (7(cu)) + ¥ ((0))].

Now taking into account (4.4) and relation ¢? = 1 we get

[ (ufu) = 4f (u)] <26 + 20 [ (y(cu)) + P (v(e))]. (4.9)

Lemma 4.1. Let G be an arbitrary group and f € PQy~(G). Foru,c € G,
let ¢ =1 and u‘u = uu’. Then

fuu) =4f(u). (4.10)

Proof. For any n € N, we have

n*| f(uu) — 4f (u)] = [f((w)") — 4f (u")]
= [f((u")u") = 4f (u")]
)

<0+ 0[(y(cu) + (v(u"))]

<o+ 0[(y(e) + v (v(u") +(d) + ¢ (y(u"))]
<o+0[0(v(c) +9(d) + 2¢(n(y(u) + d))]
<o+ 0[Y(v(e) +¢(d) +2ny(y(u) +d)].

Hence

Flutu) 4 ()| <
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Therefore, by letting n — oo, we see that

fufu) = 4f(u)

and the proof is now complete. O
Suppose that A and B arbitrary groups. For any b € B let A(b) be
the group isomorphic to A under isomorphism a — a(b). We denote by

H = A®) = T],.5 A(b) the direct product of the group A(b). Cearly, if
a(by)a(bs) - - - a(by) is some element of H, then for b € B the mapping
b* ra(by) a(by) - --a(by) — a(bib) a(beb) - - - a(bib)

is an automorphism of H, and the mapping b — b* is an embedding of B in
Aut H. Hence, we can form a semidirect product G = B - H. This group is the
wreath product of the groups A and B and will be denoted by G = At B. We
shell identify the group A with subgroup A(1) of H, where 1 is unit element
of B. Thus, we may assume that A is a subgroup of H.

Let v4 : A — R{ and va(zy) < va(z) + va(y) for any z,y € A. Let
vp : B — R{ such that vz(zy) < yp(z) + v8(y) for any z,y € B. Let v be
an extension of the function v4 from A to H defined by

Y(ai(b1) az(bs) - - - am (b)) = ZVA(C%‘), (4.11)

V(b ai(by) az(bz) - - @ (b)) = 18(b) + v(ai(br) az(bz) - - - @ (b)).  (4.12)
Let C be the group of order 2 with generator ¢. Consider the group A C.
Lemma 4.2. If for some ay,b; € A we have equality
| fa1by) + f(arby") = 2f(ar) — 2f(b1)| = 0 > 0,
then there exist x,y € H such that
|flzy) + flay™h) — 2f(x) — 2f (y)| = 46.
Proof. Let u = a;b;. Then u®u = wu®. Using relation (4.10) we get
flarafhiby) + f(araf(by)br") — 2f (anag) — 2 (biby)
=f(arbraihy) + flaiby'ag(br')%) — 2f (aag) — 2 (bib})

:4f(a1b1) + 4f(a1bf1) — 8f(a1) — Sf(bl)
=40.

The proof is completed. O
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Theorem 4.3. Let A be a group and v : A — R be a function satisfying
relation y(xy) < vy(x) + y(y) for all x,y € A, then A can be embedded into a
group G such that the equation (3.1) is (v, ~)-stable on G.

Proof. Let C; denotes a group of order two for any ¢ € N. Define function ~
on C; as zero function. Consider a chain of groups:

AIZA, AQIAlzCh AgIAQZCQ,..., AkJrl:Aszk-,...
Now define the following chain of embeddings:
Al — Ay — A3 — - — Apg — ... (4.13)

by identifying Ay with Ag(1) — a subgroup of Aj,1. Let G be the direct limit
of (4.13). Then G = U, NAx and

A1CA2C"'CAkCAk+1C ...... C G.

Let us extend function ~ from group A; onto A;.; by the rule mentioned in
(4.11) and (4.12) ). Let f € PQy~(G). Suppose that there are ay, by in A,
such that

| flarbr) + flarbi") — 2f(ar) — 2f(b1)] = § > 0.
Put ay = ajaf', by = b1b7*. Then by Lemma 4.2 we get
| fazbs) + flazby') — 2f(az) — 2f(bs)| = 4.

Furthermore, for any k € N, we set apy1 = ara)”, bp1 = bpb. Using
Lemma 4.2 k times, we obtain

[ (ansabern) + flarsibeyy) = 2f(ai) = 2f (beyr)| = 4%6.

From the way of extending 7 (see (4.11) and (4.12)), it follows that

v(az) = y(a1ai") = y(a1) +y(af') = 2v(a1).

Similarly, y(b2) = 27(b1). Using induction on k, we get y(agy1) = 2¥y(a1) and

V(brs1) = 25 (bn).
Now if r and # nonnegative numbers, such that for any x,y € G, we have
relation

|flzy) + flay™) = 2f(x) = 2f ()] < r + 00 (v () + (v (y))],
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then
4k = |f(ak+lbk+1) + f(ak+1b1;i1) - zf(ak—i-l) - 2f(bk+1)|

<740 [(y(aks1)) + (7 (k1))

=1+ 02" y(ar)) + (2" (b))

<7+ 280 [ (y(a) + (b))
Therefore

r ok
5 < 20 2 W) + o 0)]

Because of the last relation is true for any k& € N we obtain § = 0. So
f|A1 € Q(A;). Similarly, we verify that f‘Ak € Q(Ag) for any k € N. Therefore
f € Q(G). The proof is now complete. O
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