On (ψ, γ)-Stability of Quadratic Equation on Groups *

Valerii A. Faiziev ${ }^{\dagger}$
Tver State Agricultural Academy, Tver Sakharovo
Zeleznodorojnikov str. 35/1 apt. 13, Tver 170043 Russia
and
Prasanna K.Sahoo ${ }^{\ddagger}$
Department of Mathematics, University of Louisville, Louisville, Kentucky 40292 USA

Received May 25, 2008, Accepted May 25, 2008.

Abstract

In this paper, the (ψ, γ)-stability of the quadratic functional equation is considered on arbitrary groups. It is proved that every group can be embedded into a group in which the quadratic equation is (ψ, γ) stable. Further, it is shown that the quadratic functional equation is (ψ, γ)-stable on all abelian groups and some non-abelian groups such as $U T(3, K), T(3, K)$ and $T(2, K)$, where K is an arbitrary field. The results of Skof [19] and Czerwik [4] are generalized in this paper.

Keywords and Phrases: (ψ, γ)-pseudoquadratic map, (ψ, γ)-quasiquadratic map, Quadratic map, Quadratic functional equation, Semidirect product of groups, (ψ, γ)-stability of quadratic functional equation, Wreath product of groups.

[^0]
1. Introduction

In 1940 to the audience of the Mathematics Club of the University of Wisconsin S. M. Ulam presented a list of unsolved problems [20]. One of these problems can be considered as the starting point of a new line of investigations: the stability problem. The problem was posed as follows. If we replace a given functional equation by a functional inequality, then under what conditions we can say that the solutions of the inequality are close to the solutions of the equation. For example, given a group G_{1}, a metric group $\left(G_{2}, d\right)$ and a positive number ε, the Ulam question is: Does there exist a $\delta>0$ such that if the $\operatorname{map} f: G_{1} \rightarrow G_{2}$ satisfies $d(f(x y), f(x) f(y))<\delta$ for all $x, y \in G_{1}$, then a homomorphism $T: G_{1} \rightarrow G_{2}$ exists with $d(f(x), T(x))<\varepsilon$ for all $x, y \in G_{1}$? In the case of a positive answer to this problem, we say that Cauchy functional equation $f(x y)=f(x) f(y)$ is stable for the pair $\left(G_{1}, G_{2}\right)$. The interested reader should refer to [20] and [13] for an account on Ulam's problem.

Hyers [12] proved the following result to give an affirmative answer to Ulam's problem. Let X, Y be Banach spaces and let $f: X \rightarrow Y$ be a mapping satisfying

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon
$$

for all x, y in X. Then there exists a unique additive map $A: X \rightarrow Y$ satisfying

$$
\|f(x)-A(x)\| \leq \varepsilon
$$

for all x in X. This pioneer result of Hyers can be expressed in the following way: Cauchy's functional equation is stable for any pair of Banach spaces.

Aoki [1] proved a generalized version of the previous result which permitted the Cauchy difference to become unbounded. That is, he assumed that

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}\right) \quad \text { for all } \quad x, y \in X
$$

where ε and p are constants satisfying $\varepsilon>0$ and $0 \leq p<1$. By making use of the direct method of Hyers [12], he proved in this case too, that there is an additive function T from X into Y given by the formula

$$
T(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

such that

$$
\|T(x)-f(x)\| \leq k \varepsilon\|x\|^{p}
$$

where k depends on p as well as ε. Independently, Th.M. Rassias [17] in 1978 rediscovered the above result and proved that the mapping T is not only additive, under certain conditions, it is also linear. Rassias's paper [17] provided an impetus for a lot of activities in stability theory of functional equations. The first paper to extend Rassias's result to a class nonabelian groups and semigroups was [8].

The quadratic functional equation

$$
\begin{equation*}
f(x y)+f\left(x y^{-1}\right)=2 f(x)+2 f(y) \tag{1.1}
\end{equation*}
$$

where f is defined on a group G and takes its values from a vector space E, is an important equation in the theory of functional equations and it plays an important role in the characterization of inner product spaces [7]. The stability of the quadratic functional equation (1.1) was first proved by Skof [19] for functions from a normed space into a Banach space. Cholewa [2] demonstrated that Skof's theorem is also valid if the relevant domain is replaced by an Abelian group. Later, Fenyő [10] improved the bound obtained and Cholewa from $\frac{\varepsilon}{2}$ to $\frac{\varepsilon+\|f(0)\|}{3}$ (cf. [3]).
Theorem 1.1. Let G be an Abelian group and let E be a Banach space. If a function $f: G \rightarrow E$ satisfies the inequality

$$
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \varepsilon
$$

for some $\varepsilon \geq 0$ and for all $x, y \in G$, then there exists a unique quadratic function $q: G \rightarrow E$ such that

$$
\|f(x)-q(x)\| \leq \frac{1}{3}(\varepsilon+\|f(0)\|)
$$

for all $x \in G$.
The above theorem can be expressed in the following way: The quadratic functional equation is stable for the pair (G, E), where G is an Abelian group and E is a Banach space. In the paper [4], the following result on Hyers-Ulam-Rassias stability of quadratic functional equation on normed space was obtained that generalized the results of Skof [19] and Cholewa [2].
Theorem 1.2. Let E_{1} be a normed space and E_{2} a Banach space and let $f: E_{1} \rightarrow E_{2}$ be a function satisfying inequality

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leq \varphi(x, y) \tag{1.2}
\end{equation*}
$$

with either

1. $\varphi(x, y)=\varepsilon+\theta\left(\|x\|^{p}+\|y\|^{p}\right), \quad p<2, x, y \in X \backslash\{0\}$ or
2. $\varphi(x, y)=\theta\left(\|x\|^{p}+\|y\|^{p}\right), \quad p>2, x, y \in X$
for some $\varepsilon, \theta \geq 0$. Then there exists a unique quadratic map $Q: E_{1} \rightarrow E_{2}$ such that

$$
\|f(x)-Q(x)\| \leq \frac{1}{3}(\varepsilon+\|f(0)\|)+\frac{2 \theta}{4-2^{p}}\|x\|^{p}, \quad x \in E_{1} \backslash\{0\}
$$

in case 1 and

$$
\|f(x)-Q(x)\| \leq \frac{2 \theta}{2^{p}-4}\|x\|^{p}, \quad x \in E_{1}
$$

in case 2.

Various works on stability of the quadratic functional equation can be found in Skof [19], Cholewa [2], Fenyő [10], Ger [11], Czerwik [3], [4], [5], [6], Jung [14], [15], Jung and Sahoo [16], and Rassias [18]. In all these works, the stability of the quadratic equation or a more general quadratic equation was treated for the pair (G, E) when G is an Abelian group. In the present paper, we consider the stability of the functional equation (1.1) for the pair (G, E) when G is an arbitrary group and E is a real Banach space. The Skof's result [19] is a particular case of this result. We also show that any group can be embedded into a group G such that the functional equation (1.1) is stable on G.

In this paper, we generalize Theorem 1.2 in two different ways. First, we use a more general term on the right hand side of (1.2), namely $a+\theta[\psi(\gamma(x))+$ $\psi(\gamma(y))]$, where a and θ are positive constants, $\gamma: G \rightarrow(0, \infty)$ is a function satisfying some special conditions to be discussed in the next section, and $\psi:[0, \infty) \rightarrow(0, \infty)$ is an increasing subadditive function. Second, we replace the domain of the function f by some of noncommutative group G. The paper is organized as follows: In Section 2, we present some preliminary results that will be needed to prove some results in the subsequent sections of this paper. In Section 3, we prove the (ψ, γ)-stability of quadratic functional equation on abelian group, and nonabelian groups such as $U T(3, K), T(2, K)$, and $T(3, K)$, where K is an arbitrary field. Among other results, we prove that any group A can be embedded into a group G such that the quadratic functional equation is (ψ, γ)-stable on G.

2. Preliminary results

We will denote the set of real numbers by \mathbb{R} and the set of natural numbers by \mathbb{N}. Let $\mathbb{R}_{0}^{+}=[0, \infty)$ be the set of non-negative numbers and $\mathbb{R}^{+}=(0, \infty)$ be the set of positive numbers. Let G be an arbitrary group. Throughout this paper, the function $\psi: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}^{+}$is considered to be an increasing and subadditive function, that is ψ satisfies the conditions:

1. $\psi\left(t_{1}\right) \leq \psi\left(t_{2}\right)$ for all $t_{1}, t_{2} \in \mathbb{R}_{0}^{+}$whenever $t_{1} \leq t_{2}$, and
2. $\psi\left(t_{1}+t_{2}\right) \leq \psi\left(t_{1}\right)+\psi\left(t_{2}\right)$ for all $t_{1}, t_{2} \in \mathbb{R}_{0}^{+}$.

Throughout this paper, by γ we will mean a function $\gamma: G \rightarrow \mathbb{R}_{0}^{+}$satisfying

1. $\gamma\left(x^{-1}\right)=\gamma(x)$ for all $x \in G$, and
2. $\gamma(x y) \leq \gamma(x)+\gamma(y)+d$ for all $x, y \in G$
for some nonnegative real number d. It is clear that for any $x \in G$ and any $m \in \mathbb{N}$ the following inequalities hold

$$
\begin{equation*}
\psi\left(\gamma\left(x^{m}\right)\right) \leq \psi(m \gamma(x)+m d) \leq m \psi(\gamma(x)+d) \leq m \psi(\gamma(x))+m \psi(d) \tag{2.1}
\end{equation*}
$$

Definition 2.1. Let G be a group and E a Banach space. The function f : $G \rightarrow E$ is said to be a (ψ, γ)-quasiquadratic mapping if there are nonnegative numbers a and θ such that for any $x, y \in G$

$$
\begin{equation*}
\left\|f(x y)+f\left(x y^{-1}\right)-2 f(x)-2 f(y)\right\| \leq a+\theta[\psi(\gamma(x))+\psi(\gamma(y))] \tag{2.2}
\end{equation*}
$$

holds. The set of all (ψ, γ)-quasiquadratic mappings will be denoted by the set $K Q_{\psi, \gamma}(G, E)$.

Clearly, the set of all (ψ, γ)-quasiquadratic mappings, $K Q_{\psi, \gamma}(G, E)$, is a linear space.

Lemma 2.2. Let $f \in K Q_{\psi, \gamma}(G, E)$ be a (ψ, γ)-quasiquadratic mapping. Then for any $m \geq 2$ there are nonnegative numbers c_{m} and θ_{m} such that

$$
\begin{equation*}
\left\|f\left(x^{m}\right)-m^{2} f(x)\right\| \leq c_{m}+\theta_{m} \psi(\gamma(x)), \quad \forall x \in G \tag{2.3}
\end{equation*}
$$

Proof. We will prove this lemma by induction on m. By letting $y=x$ in (2.2), we obtain

$$
\left\|f\left(x^{2}\right)+f(1)-4 f(x)\right\| \leq a+2 \theta \psi(\gamma(x)) \quad \forall x \in G
$$

Therefore

$$
\left\|f\left(x^{2}\right)-4 f(x)\right\| \leq a+\|f(1)\|+2 \theta \psi(\gamma(x)) \quad \forall x \in G
$$

If we put $c_{2}=a+\|f(1)\|$ and $\theta_{2}=2 \theta$ in the last inequality, then we get

$$
\left\|f\left(x^{2}\right)-4 f(x)\right\| \leq c_{2}+\theta_{2} \psi(\gamma(x)) \quad \forall x \in G
$$

Replacing x by x^{m} and y by x in (2.2), we obtain

$$
\left\|f\left(x^{m+1}\right)+f\left(x^{m-1}\right)-2 f\left(x^{m}\right)-2 f(x)\right\| \leq a+\theta\left[\psi\left(\gamma\left(x^{m}\right)\right)+\psi(\gamma(x))\right]
$$

for all $x \in G$. Using (2.1) in the last inequality, we see that

$$
\left\|f\left(x^{m+1}\right)+f\left(x^{m-1}\right)-2 f\left(x^{m}\right)-2 f(x)\right\| \leq a+m \theta \psi(d)+\theta[m \psi(\gamma(x))+\psi(\gamma(x))]
$$

which is

$$
\begin{align*}
& \left\|f\left(x^{m+1}\right)+f\left(x^{m-1}\right)-2 f\left(x^{m}\right)-2 f(x)\right\| \tag{2.4}\\
\leq & a+m \theta \psi(d)+\theta[m+1] \psi(\gamma(x))
\end{align*}
$$

for all $x \in G$. Suppose that (2.3) has been already established for $2 \leq m \leq k$. Let us check it for $k+1$. From (2.4), we have

$$
\left\|f\left(x^{k+1}\right)+f\left(x^{k-1}\right)-2 f\left(x^{k}\right)-2 f(x)\right\| \leq a+k \theta \psi(d)+\theta[k+1] \psi(\gamma(x))
$$

Using (2.3) in the last inequality, we see that

$$
\begin{aligned}
& \left\|f\left(x^{k+1}\right)+(k-1)^{2} f(x)-2 k^{2} f(x)-2 f(x)\right\| \\
\leq & a+k \theta \psi(d)+\theta[k+1] \psi(\gamma(x))+c_{k-1}+\theta_{k-1} \psi(\gamma(x))+2 c_{k}+2 \theta_{k} \psi(\gamma(x)) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left\|f\left(x^{k+1}\right)-(k+1)^{2} f(x)\right\| \\
\leq & a+k \theta \psi(d)+c_{k-1}+2 c_{k}+\left[\theta(k+1)+\theta_{k-1}+2 \theta_{k}\right] \psi(\gamma(x))
\end{aligned}
$$

Letting $c_{k+1}=a+k \theta \psi(d)+c_{k-1}+2 c_{k}$ and $\theta_{k+1}=\theta(k+1)+\theta_{k-1}+2 \theta_{k}$ we obtain the asserted inequality (2.3) and the proof of the lemma is now complete.
\square Let

$$
\begin{equation*}
\rho_{m}(k)=\sum_{i=0}^{k-1}\left(\frac{1}{m^{2}}\right)^{i} \quad \text { and } \quad \pi_{m}(k)=\sum_{i=0}^{k-1}\left(\frac{1}{m}\right)^{i} . \tag{2.5}
\end{equation*}
$$

Lemma 2.3. Let $f \in K Q_{\psi, \gamma}(G, E)$ and $m \in \mathbb{N}$ with $m \geq 2$. For any $k \in \mathbb{N}$ the inequality

$$
\begin{align*}
& \left\|\frac{1}{m^{2 k}} f\left(x^{m^{k}}\right)-f(x)\right\| \tag{2.6}\\
\leq & \frac{c_{m}}{m^{2}} \rho_{m}(k)+\psi(d) \theta_{m} r_{m}(k)+\frac{\theta_{m}}{m^{2}} \pi_{m}(k) \psi(\gamma(x))
\end{align*}
$$

holds. Here c_{m} and θ_{m} are nonnegative numbers, $\pi_{m}(k)$ and $\rho_{m}(k)$ are numbers as defined in (2.5), and $0 \leq r_{m}(n)<1$.

Proof. From Lemma 2.2 it follows that

$$
\begin{equation*}
\left\|\frac{1}{m^{2}} f\left(x^{m}\right)-f(x)\right\| \leq \frac{c_{m}}{m^{2}}+\frac{\theta_{m}}{m^{2}} \psi(\gamma(x)) \tag{2.7}
\end{equation*}
$$

So, $r_{m}(1)=0$. Suppose that (2.6) has been already established for $k=$ $1,2, \ldots, n$. Let us check it for $k=n+1$. Using the induction hypothesis, we have

$$
\begin{aligned}
& \left\|\frac{1}{m^{2 n}} f\left(x^{m^{n}}\right)-f(x)\right\| \\
\leq & \frac{c_{m}}{m^{2}} \rho_{m}(n)+\psi(d) \theta_{m} r_{m}(n)+\frac{\theta_{m}}{m^{2}} \pi_{m}(n) \psi(\gamma(x))
\end{aligned}
$$

Substituting x^{m} for x, we get

$$
\begin{aligned}
& \left\|\frac{1}{m^{2 n}} f\left(x^{m^{n+1}}\right)-f\left(x^{m}\right)\right\| \\
\leq & \frac{c_{m}}{m^{2}} \rho_{m}(n)+\psi(d) \theta_{m} r_{m}(n)+\frac{\theta_{m}}{m^{2}} \pi_{m}(n) \psi\left(\gamma\left(x^{m}\right)\right) .
\end{aligned}
$$

Hence using (2.1), we obtain

$$
\begin{aligned}
& \left\|\frac{1}{m^{2(n+1)}} f\left(x^{m^{n+1}}\right)-\frac{1}{m^{2}} f\left(x^{m}\right)\right\| \\
\leq & \frac{c_{m}}{m^{4}} \rho_{m}(n)+\psi(d) \theta_{m} r_{m}(n) \frac{1}{m^{2}}+\frac{\theta_{m}}{m^{4}} \pi_{m}(n) m \psi(\gamma(x)+d) .
\end{aligned}
$$

From the last inequality and (2.7), we obtain

$$
\begin{aligned}
& \left\|\frac{1}{m^{2(n+1)}} f\left(x^{m^{n+1}}\right)-f(x)\right\| \\
\leq & \left\|\frac{1}{m^{2(n+1)}} f\left(x^{m^{n+1}}\right)-\frac{1}{m^{2}} f\left(x^{m}\right)\right\|+\left\|\frac{1}{m^{2}} f\left(x^{m}\right)-f(x)\right\| \\
\leq & \frac{c_{m}}{m^{4}} \rho_{m}(n)+\psi(d) \theta_{m} \frac{r_{m}(n)}{m^{2}}+\frac{\theta_{m}}{m^{4}} \pi_{m}(n) m \psi(\gamma(x)+d)+\frac{c_{m}}{m^{2}}+\frac{\theta_{m}}{m^{2}} \psi(\gamma(x)) \\
= & \frac{c_{m}}{m^{4}} \rho_{m}(n)+\frac{c_{m}}{m^{2}}+\psi(d) \theta_{m} \frac{r_{m}(n)}{m^{2}}+\frac{\theta_{m}}{m^{4}} \pi_{m}(n) m \psi(\gamma(x)+d)+\frac{\theta_{m}}{m^{2}} \psi(\gamma(x)) \\
= & {\left[\frac{\rho_{m}(n)}{m^{2}}+1\right] \frac{c_{m}}{m^{2}}+\psi(d) \theta_{m}\left[\frac{r_{m}(n)}{m^{2}}+\frac{\pi_{m}(n)}{m^{3}}\right]+\left[\frac{\pi_{m}(n)}{m}+1\right] \frac{\theta_{m}}{m^{2}} \psi(\gamma(x)) } \\
= & \frac{c_{m}}{m^{2}} \rho_{m}(n+1)+\psi(d) \theta_{m}\left[\frac{r_{m}(n)}{m^{2}}+\frac{\pi_{m}(n)}{m^{3}}\right]+\pi_{m}(n+1) \frac{\theta_{m}}{m^{2}} \psi(\gamma(x)) .
\end{aligned}
$$

Put $r_{m}(n+1)=r_{m}(n) \frac{1}{m^{2}}+\frac{1}{m^{3}} \pi_{m}(n)$ then it is clear that $0 \leq r_{m}(n+1)<1$ and the proof of the lemma is complete.

Lemma 2.4. Let $f \in K Q_{\psi, \gamma}(G, E)$ be a (ψ, γ)-quasiquadratic mapping. For any $m \geq 2$ and any $x \in G$, the sequence $\left\{\frac{1}{m^{2 k}} f\left(x^{m^{k}}\right)\right\}_{k=1}^{\infty}$ is a Cauchy sequence with

$$
\begin{equation*}
f_{m}(x)=\lim _{k \rightarrow \infty} \frac{1}{m^{2 k}} f\left(x^{m^{k}}\right) \tag{2.8}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
\alpha_{m}=\sum_{i=0}^{\infty} \frac{1}{m^{2 i}} \quad \text { and } \quad \beta_{m}=\sum_{i=0}^{\infty}\left(\frac{1}{m}\right)^{i} \tag{2.9}
\end{equation*}
$$

Then by (2.7) and (2.9), we have

$$
\left\|\frac{1}{m^{2 n}} f\left(x^{m^{n}}\right)-f(x)\right\| \leq \frac{c_{m}}{m^{2}} \alpha_{m}+\psi(d) \theta_{m}+\frac{\theta_{m}}{m^{2}} \beta_{m} \psi(\gamma(x))
$$

Substituting $x^{m^{k}}$ for x in the last inequality, we get

$$
\begin{aligned}
& \left\|\frac{1}{m^{2 n}} f\left(x^{m^{n+k}}\right)-f\left(x^{m^{k}}\right)\right\| \\
\leq & \frac{c_{m}}{m^{2}} \alpha_{m}+\psi(d) \theta_{m}+\frac{\theta_{m}}{m^{2}} \beta_{m} \psi\left(\gamma\left(x^{m^{k}}\right)\right) \\
& \leq \frac{c_{m}}{m^{2}} \alpha_{m}+\psi(d) \theta_{m}+\frac{\theta_{m}}{m^{2}} \beta_{m} m^{k} \psi(d)+\frac{\theta_{m}}{m^{2}} \beta_{m} m^{k} \psi(\gamma(x))
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& \left\|\frac{1}{m^{2(n+k)}} f\left(x^{m^{n+k}}\right)-\frac{1}{m^{2 k}} f\left(x^{m^{k}}\right)\right\| \\
\leq & \frac{\alpha_{m}}{m^{2 k}} \frac{c_{m}}{m^{2}}+\frac{\psi(d) \theta_{m}}{m^{2 k}}+\frac{\beta_{m}}{m^{2 k}} \frac{\theta_{m}}{m^{2}} m^{k} \psi(d)+\frac{\beta_{m}}{m^{2 k}} \frac{\theta_{m}}{m^{2}} m^{k} \psi(\gamma(x)) \\
\leq & \frac{c_{m}}{m^{2 k+2}} \alpha_{m}+\psi(d) \theta_{m} \frac{1}{m^{2 k}}+\frac{\theta_{m}}{m^{k+2}} \beta_{m} \psi(d)+\frac{\theta_{m}}{m^{k+2}} \beta_{m} \psi(\gamma(x)) .
\end{aligned}
$$

From the latter relation it follows that the sequence $\left\{\frac{1}{m^{2 k}} f\left(x^{m^{k}}\right)\right\}_{k=1}^{\infty}$ is a Cauchy sequence, and therefore has a limit which we denote by $f_{m}(x)$. This completes the proof of the lemma.

Let

$$
\begin{equation*}
a_{m}=\frac{c_{m}}{m^{2}} \alpha_{m}+\psi(d) \theta_{m} \quad \text { and } \quad b_{m}=\frac{\theta_{m}}{m^{2}} \beta_{m} \tag{2.10}
\end{equation*}
$$

Let $\delta_{m}(x)=a_{m}+b_{m} \psi(\gamma(x))$. Then

$$
\begin{aligned}
\delta_{m}(x y) & =a_{m}+b_{m} \psi(\gamma(x y)) \\
& \leq a_{m}+b_{m} \psi(\gamma(x))+b_{m} \psi(\gamma(y))+b_{m} \psi(d) \\
& \leq \delta_{m}(x)+\delta_{m}(y)+b_{m} \psi(d) \\
& =2 a_{m}+b_{m} \psi(d)+b_{m}[\psi(\gamma(x))+\psi(\gamma(y))] .
\end{aligned}
$$

Similarly

$$
\delta_{m}\left(x y^{-1}\right) \leq 2 a_{m}+b_{m} \psi(d)+b_{m}[\psi(\gamma(x))+\psi(\gamma(y))] .
$$

From (2.6) it follows that

$$
\begin{equation*}
\left\|\frac{1}{m^{2 k}} f\left(x^{m^{k}}\right)-f(x)\right\| \leq a_{m}+b_{m} \psi(\gamma(x)), \tag{2.11}
\end{equation*}
$$

and letting $k \rightarrow \infty$, we have

$$
\left\|f_{m}(x)-f(x)\right\| \leq \delta_{m}(x)
$$

Lemma 2.5. For any $m \geq 2$, the function f_{m}, defined in (2.8), belongs to the set $K Q_{\psi, \gamma}(G, E)$.

Proof. Indeed, for any $x, y \in G$, we have

$$
\begin{aligned}
& \left\|f_{m}(x y)+f_{m}\left(x y^{-1}\right)-2 f_{m}(x)-2 f_{m}(y)\right\| \\
\leq & \left\|f(x y)+f\left(x y^{-1}\right)-2 f(x)-2 f(y)\right\|+\left\|f_{m}(x y)-f(x y)\right\| \\
\quad & +\left\|f_{m}\left(x y^{-1}\right)-f\left(x y^{-1}\right)\right\|+2\left\|f_{m}(x)-f(x)\right\|+2\left\|f_{m}(y)-f(y)\right\| \\
\leq & a+\theta[\psi(\gamma(x))+\psi(\gamma(y))]+\delta_{m}(x y)+\delta_{m}\left(x y^{-1}\right)+2 \delta_{m}(x)+2 \delta_{m}(y) \\
\leq & a+\theta[\psi(\gamma(x))+\psi(\gamma(y))]+2 a_{m}+b_{m} \psi(d)+b_{m}[\psi(\gamma(x))+\psi(\gamma(y))] \\
& +2 a_{m}+b_{m} \psi(d)+b_{m}[\psi(\gamma(x))+\psi(\gamma(y))] \\
& +2 a_{m}+2 b_{m} \psi(\gamma(x))+2 a_{m}+2 b_{m} \psi(\gamma(y)) . \\
\leq & a+8 a_{m}+2 b_{m} \psi(d)+\left(\theta+4 b_{m}\right)[\psi(\gamma(x))+\psi(\gamma(y))] .
\end{aligned}
$$

Since $a+8 a_{m}+2 b_{m} \psi(d)$ and $\theta+4 b_{m}$ are nonnegative, $f_{m} \in K Q_{\psi, \gamma}(G, E)$. This completes the proof of the lemma.

Lemma 2.6. The function f_{m}, defined in (2.8), satisfies $f_{m}=f_{2}$ for all $m>2$.

Proof. From the definition of f_{m} it follows that for any $k \in \mathbb{N}$ and $x \in G$ the relations $f_{m}\left(x^{m^{k}}\right)=m^{2 k} f_{m}(x)$ and $f_{2}\left(x^{2^{k}}\right)=2^{2 k} f_{2}(x)$ hold. From Lemma 2.5, we see that $f_{m}, f_{2} \in K Q_{\psi, \gamma}(G, E)$. Hence, by Lemma 2.4, function

$$
\phi(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{2 n}} f_{m}\left(x^{2^{n}}\right)
$$

is well defined and belongs to the set $K Q_{\psi, \gamma}(G, E)$. Let c and d be nonnegative numbers such that

$$
\begin{equation*}
\left\|\phi(x)-f_{m}(x)\right\| \leq c+d \psi(\gamma(x)), \quad \forall x \in G \tag{2.12}
\end{equation*}
$$

From (2.11) it follows

$$
\begin{equation*}
\|\phi(x)-f(x)\| \leq c+a_{m}+\left(d+b_{m}\right) \psi(\gamma(x)), \quad \forall x \in G \tag{2.13}
\end{equation*}
$$

Taking into account relation

$$
\left\|f_{2}(x)-f(x)\right\| \leq a_{2}+b_{2} \psi(\gamma(x)), \quad \forall x \in G
$$

we get

$$
\begin{equation*}
\left\|\phi(x)-f_{2}(x)\right\| \leq c+a_{m}+a_{2}+\left(d+b_{m}+b_{2}\right) \psi(\gamma(x)), \quad \forall x \in G \tag{2.14}
\end{equation*}
$$

Therefore

$$
\left\|f_{m}(x)-f_{2}(x)\right\| \leq a_{m}+a_{2}+\left(b_{m}+b_{2}\right) \psi(\gamma(x)), \quad \forall x \in G
$$

It is clear that for any $\ell \in \mathbb{N}$ we have

$$
\phi\left(x^{m^{\ell}}\right)=m^{2 \ell} \phi(x), \quad \phi\left(x^{2^{\ell}}\right)=2^{2 \ell} \phi(x),
$$

hence, from (2.12) we have

$$
\begin{array}{r}
\left\|\phi\left(x^{2^{\ell}}\right)-f_{2}\left(x^{2^{\ell}}\right)\right\| \leq c+a_{m}+a_{2}+\left(d+b_{m}+b_{2}\right) \psi\left(\gamma\left(x^{2^{\ell}}\right)\right), \\
2^{2 \ell}\left\|\phi(x)-f_{2}(x)\right\| \leq c+a_{m}+a_{2}+\left(d+a_{m}+a_{2}\right) 2^{\ell} \psi(\gamma(x)+d), \\
\left\|\phi(x)-f_{2}(x)\right\| \leq \frac{c+a_{m}+a_{2}}{2^{2 \ell}}+\left(d+b_{m}+b_{2}\right) \frac{2^{\ell}}{2^{2 \ell}} \psi(\gamma(x)+d),
\end{array}
$$

and we see that $\phi \equiv f_{2}$. Similarly we check that $\phi \equiv f_{m}$. Therefore $f_{m} \equiv f_{2}$. This completes the proof.

Denote by \widehat{f} a function defined by the formula

$$
\begin{equation*}
\widehat{f}(x)=\lim _{k \rightarrow \infty} \frac{1}{4^{k}} f\left(x^{2^{k}}\right) \tag{2.15}
\end{equation*}
$$

Definition 2.7. $A(\psi, \gamma)$-quasiquadratic mapping $\phi: G \rightarrow E$ is said to be (ψ, γ)-pseudoquadratic mapping if ϕ satisfies $\varphi\left(x^{n}\right)=n^{2} \varphi(x)$ for all $x \in G$ and all $n \in \mathbb{N}$. The set of all (ψ, γ)-pseudoquadratic mappings will be denoted by the set $P Q_{\psi, \gamma}(G, E)$.

From Lemma 2.6 we obtain the following corollary.
Corollary 2.8. The function \widehat{f}, defined by (2.15), is a (ψ, γ)-pseudoquadratic mapping and satisfies the following relation

$$
\begin{equation*}
\left\|\frac{1}{m^{2 k}} f\left(x^{m^{k}}\right)-f(x)\right\| \leq a_{m}+b_{m} \psi(\gamma(x)) . \tag{2.16}
\end{equation*}
$$

Definition 2.9. By $B_{\psi, \gamma}(G, E)$ we donote the set of all functions f such that if f belongs to $B_{\psi, \gamma}(G, E)$, then there are nonnegative numbers a and b such that

$$
\begin{equation*}
\|f(x)\| \leq a+b \psi(\gamma(x)) \tag{2.17}
\end{equation*}
$$

for all $x \in G$.

Theorem 2.10. The linear space $K Q_{\psi, \gamma}(G, E)$ of all (ψ, γ)-quasiquadratic mappings can be decomposed as the direct sum of $P Q_{\psi, \gamma}(G, E)$ and $B_{\psi, \gamma}(G, E)$, that is $K Q_{\psi, \gamma}(G, E)=P Q_{\psi, \gamma}(G, E) \oplus B_{\psi, \gamma}(G, E)$.

Proof. It is easy to see that $P Q_{\psi, \gamma}(G, E)$ and $B_{\psi, \gamma}(G, E)$ are linear subspaces of $K Q_{\psi, \gamma}(G, E)$. Let us show that $P Q_{\psi, \gamma}(G, E) \cap B_{\psi, \gamma}(G, E)=\{0\}$. Indeed, if $f \in P Q_{\psi, \gamma}(G, E) \cap B_{\psi, \gamma}(G, E)$, then using (2.17) we have for any $k \in \mathbb{N}$

$$
\left\|f\left(x^{2^{k}}\right)\right\| \leq a+b \psi\left(\gamma\left(x^{2^{k}}\right)\right)
$$

which by (2.1) and the fact that f is (ψ, γ)-pseudoquadratic implies

$$
4^{k}\|f(x)\| \leq a+b 2^{k} \psi(\gamma(x)+d)
$$

Rewriting the last inequality, we have

$$
\|f(x)\| \leq \frac{a}{4^{k}}+\frac{b}{2^{k}} \psi(\gamma(x)+d)
$$

and taking the limit as $k \rightarrow \infty$ we see that $f(x)=0$.
Let f be an arbitrary element of $K Q_{\psi, \gamma}(G, E)$, then by Corollary 2.8, $\widehat{f} \in P Q_{\psi, \gamma}(G, E)$. Again from Corollary 2.8 we see that $f-\widehat{f} \in B Q_{\psi, \gamma}(G, E)$. Now the proof is complete.

3. Stability

Definition 3.1. Let $\psi: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}^{+}$and $\gamma: G \rightarrow \mathbb{R}_{0}^{+}$be the functions as stated in the beginning of Section 2, and let $f: G \rightarrow E$. The quadratic equation

$$
\begin{equation*}
f(x y)+f\left(x y^{-1}\right)-2 f(x)-2 f(y)=0 \tag{3.1}
\end{equation*}
$$

is said to be (ψ, γ)-stable if for any function φ satisfying condition

$$
\left\|\varphi(x y)+\varphi\left(x y^{-1}\right)-2 \varphi(x)-2 \varphi(y)\right\| \leq a+b[\psi(\gamma(x))+\psi(\gamma(y))]
$$

there exists a solution g of the equation (3.1), such that

$$
\|\varphi(x)-g(x)\| \leq c+d \psi(\gamma(x))
$$

for some nonnegative numbers c and d and any $x \in G$.

The set of all solutions of the quadratic functional equation (3.1) will be denoted by $Q(G, E)$. Clearly, $Q(G, E)$ is a linear space.

Proposition 3.2. The quadratic equation (3.1) is (ψ, γ)-stable if and only if $P Q_{\psi, \gamma}(G, E)=Q(G, E)$.
Proof. The proof follows from Theorem 2.10.
Lemma 3.3. The quadratic equation (3.1) is (ψ, γ)-stable for any abelian group G.

Proof. Let G be an abelian group. Thus $(x y)^{p}=x^{p} y^{p}$ for any $p \in \mathbb{N}$ and for any $x, y \in G$. Let $f \in P Q_{\psi, \gamma}(G, E)$. Then we have

$$
\begin{aligned}
& \left\|f\left((x y)^{p}\right)+f\left(\left(x y^{-1}\right)^{p}\right)-2 f\left(x^{p}\right)-2 f\left(y^{p}\right)\right\| \\
= & \left\|f\left(x^{p} y^{p}\right)+f\left(x^{p}\left(y^{-1}\right)^{p}\right)-2 f\left(x^{p}\right)-2 f\left(x^{p}\right)\right\| \\
\leq & a+b\left[\psi\left(\gamma\left(x^{p}\right)\right)+\psi\left(\gamma\left(y^{p}\right)\right)\right] \\
\leq & a+b[p \psi(\gamma(x)+d)+p \psi(\gamma(y)+d)] .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \quad p^{2}\left\|f(x y)+f\left(x y^{-1}\right)-2 f(x)-2 f(y)\right\| \\
& \leq a+b p[\psi(\gamma(x)+d)+\psi(\gamma(y)+d)]
\end{aligned}
$$

which is

$$
\begin{gathered}
\left\|f(x y)+f\left(x y^{-1}\right)-2 f(x)-2 f(y)\right\| \\
\leq \frac{a}{p^{2}}+\frac{b}{p^{2}}[\psi(\gamma(x)+d)+\psi(\gamma(y)+d)] .
\end{gathered}
$$

Letting $p \rightarrow \infty$ in the last inequality, we have

$$
f(x y)+f\left(x y^{-1}\right)-2 f(x)-2 f(y)=0
$$

Hence $f \in Q(G, E)$. By Proposition 3.2 the equation (3.1) is (ψ, γ)-stable and the proof of the lemma is complete.

Lemma 3.4. Let $f \in P Q_{\psi, \gamma}(G, E)$. Then for any $x, y \in G$ the following relations hold:

$$
\text { 1. } f\left(x^{-1}\right)=f(x) \text {, }
$$

2. $f(x y)=f(y x)$.

Proof. 1. Since $f \in P Q_{\psi, \gamma}(G, E)$, we have

$$
\left\|f(y)+f\left(y^{-1}\right)-2 f(1)-2 f(y)\right\| \leq a+b \psi(\gamma(1))+b \psi(\gamma(y))
$$

Hence

$$
\left\|f\left(y^{-1}\right)-f(y)\right\| \leq a+2\|f(1)\|+b \psi(\gamma(1))+b \psi(\gamma(y))
$$

Therefore, for any $n \in \mathbb{N}$, we have

$$
\left\|f\left(y^{-n}\right)-f\left(y^{n}\right)\right\| \leq a+2\|f(1)\|+b \psi(\gamma(1))+b \psi\left(\gamma\left(y^{n}\right)\right)
$$

and

$$
\left\|f\left(y^{-1}\right)-f(y)\right\| \leq \frac{a+2\|f(1)\|+b \psi(\gamma(1))}{n^{2}}+b \frac{n}{n^{2}} \psi(\gamma(y)+d)
$$

Letting $n \rightarrow \infty$ in the last inequality, we see that $f\left(y^{-1}\right)=f(y)$.
2. Since $f \in P Q_{\psi, \gamma}(G, E)$, we obtain

$$
\left\|f(x y)+f\left(x y^{-1}\right)-2 f(x)-2 f(y)\right\| \leq a+b[\psi(\gamma(x))+\psi(\gamma(y))] .
$$

Interchanging x with y in the last inequality, we get

$$
\left\|f(y x)+f\left(y x^{-1}\right)-2 f(y)-2 f(x)\right\| \leq a+b[\psi(\gamma(x))+\psi(\gamma(y))] .
$$

Using the fact that $f\left(x^{-1}\right)=f(x)$ for all $x \in G$, we get from the last inequality

$$
\left\|f(y x)+f\left(x y^{-1}\right)-2 f(y)-2 f(x)\right\| \leq a+b[\psi(\gamma(x))+\psi(\gamma(y))]
$$

Therefore

$$
\|f(x y)-f(y x)\| \leq 2 a+2 b[\psi(\gamma(x))+\psi(\gamma(y))]
$$

Changing x by $y^{-1} x$, we get

$$
\begin{aligned}
\left\|f\left(y^{-1} x y\right)-f(x)\right\| & \leq 2 a+2 b\left[\psi\left(\gamma\left(y^{-1} x\right)\right)+\psi(\gamma(y))\right] \\
& \leq 2 a+2 b\left[\psi\left(\gamma\left(y^{-1}\right)+\gamma(x)+d\right)+\psi(\gamma(y))\right] \\
& \leq 2 a+2 \psi(d)+4 b[\psi(\gamma(x))+\psi(\gamma(y))] .
\end{aligned}
$$

Therefore for any $n \in \mathbb{N}$, replacing x by x^{n} we have

$$
\left\|f\left(y^{-1} x^{n} y\right)-f\left(x^{n}\right)\right\| \leq 2 a+2 \psi(d)+4 b\left[\psi\left(\gamma\left(x^{n}\right)\right)+\psi\left(\gamma\left(y^{n}\right)\right)\right]
$$

which simplifies to

$$
n^{2}\left\|f\left(y^{-1} x y\right)-f(x)\right\| \leq 2 a+2 \psi(d)+4 b n[\psi(\gamma(x)+d)+\psi(\gamma(y)+d)]
$$

Hence

$$
\left\|f\left(y^{-1} x y\right)-f(x)\right\| \leq \frac{2 a}{n^{2}}+\frac{2 \psi(d)}{n^{2}}+\frac{4 b}{n}[\psi(\gamma(x)+d)+\psi(\gamma(y)+d)] .
$$

Taking $n \rightarrow \infty$ in the last inequality, we see that $f\left(y^{-1} x y\right)=f(x)$ which is $f(x y)=f(y x)$, and the proof of the lemma is now complete.

Theorem 3.5. Let E_{1} and E_{2} be Banach spaces. Then quadratic equation (3.1) is (ψ, γ)-stable for the pair $\left(G ; E_{1}\right)$ if and only if it is (ψ, γ)-stable for the pair $\left(G ; E_{2}\right)$.

Proof. Let E be a real Banach space and \mathbb{R} be the set of reals. Suppose that equation (3.1) is (ψ, γ)-stable for pair $(G ; E)$ and it is not (ψ, γ)-stable for pair (G, \mathbb{R}). Then there is nontrivial (ψ, γ)-pseudoquadratic mapping f on G. By nontrivial $(\psi, \gamma)-$ pseudoqudratic mapping we mean an element of $P Q_{\psi, \gamma}(G, E)$ which in not quadratic mapping. Therefore for some $a, b \geq 0$ we have

$$
\left\|f(x y)+f\left(x y^{-1}\right)-2 f(x)-2 f(y)\right\| \leq a+b[\psi(\gamma(x))+\psi(\gamma(y))]
$$

for all $x, y \in G$. Let $e \in E$ with $\|e\|=1$. Consider a function $\varphi: G \rightarrow E$ defined by the formula $\varphi(x)=f(x) \cdot e$. It is clear that φ is nontrivial $(\psi, \gamma)-$ pseudoquadratic E-valued mapping. Therefore we come to a contradiction. Now suppose that the equation (3.1) is (ψ, γ)-stable for the pair (G, \mathbb{R}), that is $P Q_{\psi, \gamma}(G ; \mathbb{R})=Q(G, \mathbb{R})$. Denote by E^{*} the space of linear bounded functionals on E with norm topology. It is clear that for any $\varphi \in P Q_{\psi, \gamma}(G ; E)$ and any $\lambda \in E^{*}$ function $\lambda \circ \varphi$ belongs $P Q_{\psi, \gamma}(G, \mathbb{R})$. Indeed, let for nonnegative numbers a, b and any $x, y \in G$ the following relation is fulfilled

$$
\left\|\varphi(x y)+\varphi\left(x y^{-1}\right)-2 \varphi(x)-2 \varphi(y)\right\| \leq a+b[\psi(\gamma(x))+\psi(\gamma(y))]
$$

Then

$$
\begin{aligned}
& \left|\lambda \circ \varphi(x y)+\lambda \circ \varphi\left(x y^{-1}\right)-2 \lambda \circ \varphi(x)-2 \lambda \circ \varphi(y)\right| \\
= & \left|\lambda\left(\varphi(x y)+\lambda \varphi\left(x y^{-1}\right)-2 \varphi(x)-2 \varphi(y)\right)\right| \\
\leq & \|\lambda\|(a+b[\psi(\gamma(x))+\psi(\gamma(y))]) \\
= & \|\lambda\| a+\|\lambda\| b[\psi(\gamma(x))+\psi(\gamma(y))] .
\end{aligned}
$$

It is clear that $\lambda \circ \varphi\left(x^{2^{n}}\right)=4^{n} \lambda \circ \varphi(x)$ for any $x \in G$ and any $n \in \mathbb{N}$. Therefore the function $\lambda \circ \varphi$ belongs to $P Q_{\psi, \gamma}(G, \mathbb{R})$. Let $f: G \rightarrow E$ be a nontrivial (ψ, γ)-pseudoquadratic mapping. Then there are $x, y \in G$ such that $f(x y)+f\left(x y^{-1}\right)-2 f(x)-2 f(y) \neq 0$. By Hahn-Banach theorem there is $\ell \in E^{*}$ such that $\ell\left(f(x y)+f\left(x y^{-1}\right)-2 f(x)-2 f(y)\right) \neq 0$. Hence, $\ell \circ f$ is a nontrivial (ψ, γ)-pseudoquadratic function on G. Thus we come to a contradiction and the proof is complete.

Due to Theorem 3.5 we can simply say that equation (3.1) is (ψ, γ)-stable or not (ψ, γ)-stable on the group G, without mentioning a Banach space. From now on in the case $E=\mathrm{R}$, we denote spaces $K Q_{\psi, \gamma}(G, \mathrm{R}), P Q_{\psi, \gamma}(G, \mathrm{R})$ and $Q(G, \mathrm{R})$ by $K Q_{\psi, \gamma}(G), P Q_{\psi, \gamma}(G)$ and $Q(G)$, respectively.

$3.1 \mathrm{G}=\mathrm{UT}(3, \mathrm{~K})$

Let K be an arbitrary field and K^{*} its multiplicative group. Denote by G the group $U T(3, K)$ consisting of matrices of the form

$$
\left[\begin{array}{ccc}
1 & y & t \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right] ; \quad x, y, t \in K
$$

Now our goal is to establish (ψ, γ)-stability of (3.1) on the group $U T(3, K)$. To establish (ψ, γ)-stability of (3.1) we need to show that $P Q_{\psi, \gamma}(G, E)=Q(G)$. Denote by A, B, C subgroups of G, consisting of matrices of the form

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & a \\
0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{ccc}
1 & b & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{ccc}
1 & 0 & c \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad a, b, c \in \mathbb{R}
$$

respectively. Denote by H a subgroup of G generated by B and C.

Proposition 3.6. If $\varphi \in P Q_{\psi, \gamma}(G, E)$, then φ has presentation of the form $\varphi(x)=q(\tau(x))$, where $\tau: G \rightarrow K \times K$ is a homomorphism defined by the formula

$$
\tau:\left[\begin{array}{ccc}
1 & b & c \\
0 & 1 & a \\
0 & 0 & 1
\end{array}\right] \rightarrow(a, b)
$$

and $q \in Q(K \times K)$. Therefore $P Q_{\psi, \gamma}(G)=Q(G)$ and equation (3.1) is (ψ, γ)-stable on G.

Proof. Let $\varphi \in P Q_{\psi, \gamma}(G)$. By Lemma 3.4, the function φ is invariant with respect inner automorphisms of G. Hence, from relation

$$
\left[\begin{array}{ccc}
1 & b_{1} & c_{1} \tag{3.2}\\
0 & 1 & a_{1} \\
0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{ccc}
1 & b & c \\
0 & 1 & a \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & b_{1} & c_{1} \\
0 & 1 & a_{1} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & b & b a_{1}-b_{1} a+c \\
0 & 1 & a \\
0 & 0 & 1
\end{array}\right]
$$

it follows

$$
\varphi\left(\left[\begin{array}{ccc}
1 & b & c \tag{3.3}\\
0 & 1 & a \\
0 & 0 & 1
\end{array}\right]\right)=\varphi\left(\left[\begin{array}{ccc}
1 & b & b a_{1}-b_{1} a+c \\
0 & 1 & a \\
0 & 0 & 1
\end{array}\right]\right)
$$

Let us check that $\left.\varphi\right|_{C} \equiv 0$. Let a and b be nonnegative numbers, such that

$$
\left|\varphi(x y)+\varphi\left(x y^{-1}\right)-2 \varphi(x)-2 \varphi(y)\right| \leq a+b[\psi(\gamma(x))+\psi(\gamma(x))]
$$

for all $x, y \in G$. A subgroup of G generated by B and C is an abelian group. Therefore for any $\beta \in B$ and $\alpha \in C$ we have

$$
\begin{equation*}
\varphi\left(\alpha \beta^{2}\right)+\varphi(\alpha)-2 \varphi(\alpha \beta)-2 \varphi(\beta)=0 \tag{3.4}
\end{equation*}
$$

Let

$$
\beta=\left[\begin{array}{ccc}
1 & b & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { and } \quad \alpha=\left[\begin{array}{ccc}
1 & 0 & c \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and $b \neq 0$. Then from (3.3) it follows

$$
\varphi\left(\left[\begin{array}{lll}
1 & b & 0 \tag{3.5}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=\varphi\left(\left[\begin{array}{lll}
1 & b & c \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)
$$

for any $c \in \mathbb{R}$. So, $\varphi\left(\alpha \beta^{2}\right)=\varphi\left(\beta^{2}\right)$ and (3.4) implies

$$
\varphi\left(\beta^{2}\right)+\varphi(\alpha)-2 \varphi(\beta)-2 \varphi(\beta)=0
$$

Hence

$$
4 \varphi(\beta)+\varphi(\alpha)-2 \varphi(\beta)-2 \varphi(\beta)=0
$$

which simplifies to

$$
\varphi(\alpha)=0 .
$$

Therefore, $\left.\varphi\right|_{C} \equiv 0$. Now from (3.3) we obtain that φ is constant on any coset of the group G by its subgroup C. Hence, there is $q \in Q(K \times K)$ such that $\varphi(x)=q(\tau(x))$ and, hence, $\varphi \in Q(G)$. The proof is complete.

$3.2 \mathrm{~T}(2, \mathrm{~K})$

Elementary computations show that

$$
\left[\begin{array}{cc}
a & c \\
0 & b
\end{array}\right]^{-1}=\left[\begin{array}{cc}
a^{-1} & -\frac{c}{b a} \\
0 & b^{-1}
\end{array}\right] .
$$

Therefore

$$
\left[\begin{array}{ll}
a & c \tag{3.6}\\
0 & b
\end{array}\right]^{-1}\left[\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right]\left[\begin{array}{ll}
a & c \\
0 & b
\end{array}\right]=\left[\begin{array}{cc}
\alpha & \frac{\alpha c}{a}-\frac{\beta c}{a} \\
0 & \beta
\end{array}\right]
$$

Lemma 3.7. Let

$$
\left[\begin{array}{ll}
x & z \\
0 & y
\end{array}\right]
$$

be an element of $T(2, R)$ such that $x \neq y$. Then there exist a, b, c, α, β such that

$$
\left[\begin{array}{ll}
a & c \tag{3.7}\\
0 & b
\end{array}\right]^{-1}\left[\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right]\left[\begin{array}{ll}
a & c \\
0 & b
\end{array}\right]=\left[\begin{array}{ll}
x & z \\
0 & y
\end{array}\right]
$$

Proof. The proof follows from letting $\alpha=x, \beta=y, a=1$, and $c=\frac{z}{x-y}$ in (3.6).

Lemma 3.8. If $f \in P Q_{\psi, \gamma}(G, E)$ and $f(g)=0$ for any diagonal matrix g, then $f \equiv 0$.

Proof. Let

$$
u=\left[\begin{array}{ll}
x & z \\
0 & x
\end{array}\right] \quad \text { and } \quad v=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Since $f \in P Q_{\psi, \gamma}(G, E)$, we have

$$
\left|f(x y)+f\left(x y^{-1}\right)-2 f(x)-2 f(x)\right| \leq p+q[\psi(\gamma(x))+\psi(\gamma(y))]
$$

for some positive numbers $p, q \geq 0$. For any $n \in \mathbb{N}$, replacing x by u^{n} and y by v, we obtain

$$
\left|f\left(u^{n} v\right)+f\left(u^{n} v^{-1}\right)-2 f\left(u^{n}\right)-2 f(v)\right| \leq p+q\left[\psi\left(\gamma\left(u^{n}\right)\right)+\psi(\gamma(v))\right]
$$

Since v is an element of order two and f has the property $f\left(z^{n}\right)=n^{2} f(z)$ for any $n \in Z$ and any $z \in G$ we get $f(v)=0$. Now by previous lemma we have $f\left(u^{n} v\right)=0$. Hence

$$
2\left|f\left(u^{n}\right)\right| \leq p+q\left[\psi\left(\gamma\left(u^{n}\right)\right)+\psi(\gamma(v))\right] .
$$

Since $f \in P Q_{\psi, \gamma}(G, E)$, we have $f\left(u^{n}\right)=n^{2} f(u)$ and hence the last inequality yields

$$
2|f(u)| \leq \frac{p}{n^{2}}+q\left[\frac{n}{n^{2}} \psi(\gamma(u)+d)+\frac{1}{n^{2}} \psi(\gamma(v))\right] .
$$

So, letting $n \rightarrow \infty$, we have $f(u)=0$. Taking into account the previous lemma we obtain $f \equiv 0$. The proof of the lemma is now complete.

Theorem 3.9. $P Q_{\psi, \gamma}(G)=Q(G)$. So, quadratic functional equation (3.1) is (ψ, γ)-stable on $G=T(2, K)$.

Proof. The proof follows from two previous lemmas.

$3.3 \mathrm{G}=\mathrm{T}(3, \mathrm{~K})$

By some elementary computations we have

$$
\left[\begin{array}{ccc}
1 & b & c \\
0 & 1 & a \\
0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
1 & -b & a b-c \\
0 & 1 & -a \\
0 & 0 & 1
\end{array}\right]
$$

Hence

$$
\left[\begin{array}{ccc}
1 & b & c \\
0 & 1 & a \\
0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{ccc}
1 & b_{1} & c_{1} \\
0 & 1 & a_{1} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & b & c \\
0 & 1 & a \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & b_{1} & c_{1}+a b_{1}-b a_{1} \\
0 & 1 & a_{1} \\
0 & 0 & 1
\end{array}\right]
$$

Then

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
x & 0 & 0 \\
0 & y & 0 \\
0 & 0 & z
\end{array}\right]^{-1}\left[\begin{array}{ccc}
1 & b_{1} & c_{1}+a b_{1}-b a_{1} \\
0 & 1 & a_{1} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
x & 0 & 0 \\
0 & y & 0 \\
0 & 0 & z
\end{array}\right] } \\
= & {\left[\begin{array}{ccc}
1 & x^{-1} y b_{1} & x^{-1} z c_{1}+x^{-1} z a b_{1}-x^{-1} z b a_{1} \\
0 & 1 & y^{-1} z a_{1} \\
0 & 0 & 1
\end{array}\right] . }
\end{aligned}
$$

Lemma 3.10. Let $f \in P Q_{\psi, \gamma}(G)$, then $\left.f\right|_{T U(3, K)} \equiv 0$.
Proof. Let

$$
g=\left[\begin{array}{ccc}
1 & b_{1} & c_{1} \\
0 & 1 & a_{1} \\
0 & 0 & 1
\end{array}\right]
$$

Let us check that a class of conjugate elements containing g contains matrix g^{2} too. To do this we need to show that for any a_{1}, b_{1} and c_{1} one can choose numbers x, y, z, a, b such that the equality

$$
\left[\begin{array}{ccc}
1 & x^{-1} y b_{1} & x^{-1} z c_{1}+x^{-1} z a b_{1}-x^{-1} z b a_{1} \\
0 & 1 & y^{-1} z a_{1} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 b_{1} & a_{1} b_{1}+2 c_{1} \\
0 & 1 & 2 a_{1} \\
0 & 0 & 1
\end{array}\right]
$$

holds. Indeed, if $a_{1}=b_{1}=0$ we can put $z=2 x$. If $a_{1}=0, b_{1} \neq 0$ we can put $y=z=2 x, a=0$, and if $a_{1} \neq 0, b_{1} \neq 0$ we can put $y=2 x, z=4 x, b=0$, $a=\frac{a_{1} b_{1}-2 c_{1}}{4 b_{1}}$.

So, we see that g is conjugate to g^{2}. It follows that $f(g)=f\left(g^{2}\right)=4 f(g)$, and $f(g)=0$. This completes the proof of the lemma.

Arguing as in the case $G=T(2, K)$ we get the following theorem
Theorem 3.11. $P Q_{\psi, \gamma}(G)=Q(G)$, that is, the quadratic functional equation (3.1) is (ψ, γ)-stable on $G=T(3, K)$.

4. Embedding

Let G be an arbitrary group and $f \in P Q_{\psi, \gamma}(G)$. Hence for nonnegative numbers δ and θ and for any $x, y \in G$, we have

$$
\begin{equation*}
\left|f(x y)+f\left(x y^{-1}\right)-2 f(x)-2 f(y)\right| \leq \delta+\theta[\psi(\gamma(x))+\psi(\gamma(y))] \tag{4.1}
\end{equation*}
$$

Let b, c, u, v be elements of G and $x=b u$ and $y=c v$. We will use notation a^{b} for element $b^{-1} a b$. From (4.1), we get

$$
\begin{aligned}
& \quad\left|f\left(b c u^{c} v\right)+f\left(b c^{-1}\left(u v^{-1}\right)^{c^{-1}}\right)-2 f(b u)-2 f(c v)\right| \\
& =\left|f(b u c v)+f\left(b u v^{-1} c^{-1}\right)-2 f(b u)-2 f(c v)\right| \\
& \quad+\theta[\psi(\gamma(b u))+\psi(\gamma(c v))] .
\end{aligned}
$$

Therefore

$$
\begin{align*}
& \left|f\left(b c u^{c} v\right)+f\left(b c^{-1}\left(u v^{-1}\right)^{c^{-1}}\right)-2 f(b u)-2 f(c v)\right| \tag{4.2}\\
\leq & \delta+\theta[\psi(\gamma(b u))+\psi(\gamma(c v))]
\end{align*}
$$

and if $b=c$, then

$$
\begin{align*}
& \left|f\left(c^{2} u^{c} v\right)+f\left(\left(u v^{-1}\right)^{c^{-1}}\right)-2 f(c u)-2 f(c v)\right| \tag{4.3}\\
\leq & \delta+\theta[\psi(\gamma(c u))+\psi(\gamma(c v))] .
\end{align*}
$$

Since $f \in P Q_{\psi, \gamma}(G)$ and $c^{2} u^{c} u=(c u)^{2}$, we obtain

$$
\begin{equation*}
f\left(c^{2} u^{c} u\right)=4 f(c u) \tag{4.4}
\end{equation*}
$$

Letting $c^{2}=1$ and $u=1$ in (4.3) implies

$$
\left|f(v)+f\left(\left(v^{-1}\right)^{c^{-1}}\right)-2 f(c v)-2 f(c)\right| \leq \delta+\theta[\psi(\gamma(c))+\psi(\gamma(c v))] .
$$

Since c is an element of finite order and $f \in P Q_{\psi, \gamma}(G), f(c)=0$ and from the last inequality, we have

$$
\begin{equation*}
\left|f(v)+f\left(\left(v^{-1}\right)^{c^{-1}}\right)-2 f(c v)\right| \leq \delta+\theta[\psi(\gamma(c))+\psi(\gamma(c v))] . \tag{4.5}
\end{equation*}
$$

By Lemma 3.4, we have $f(v)=f\left(v^{-1}\right)=f\left(\left(v^{-1}\right)^{c^{-1}}\right)$ and hence (4.5) yields

$$
|2 f(v)-2 f(c v)| \leq \delta+\theta[\psi(\gamma(c))+\psi(\gamma(c v))]
$$

which is

$$
\begin{equation*}
|f(v)-f(c v)| \leq \frac{\delta}{2}+\frac{\theta}{2}[\psi(\gamma(c))+\psi(\gamma(c v))] \tag{4.6}
\end{equation*}
$$

From (4.4) and (4.6) we have

$$
\begin{equation*}
\left|f\left(u^{c} u\right)-4 f(u)\right| \leq 2 \delta+2 \theta[\psi(\gamma(c))+\psi(\gamma(c u))] \tag{4.7}
\end{equation*}
$$

Next, letting $c^{2}=1, v=1$, into (4.3), we get

$$
\left|f\left(u^{c}\right)+f\left(u^{c}\right)-2 f(c u)\right| \leq \delta+\theta[\psi(\gamma(c u))+\psi(\gamma(c))]
$$

and by Lemma 3.4 the latter reduces to

$$
\begin{equation*}
|f(u)-f(c u)| \leq \frac{\delta}{2}+\frac{\theta}{2}[\psi(\gamma(c u))+\psi(\gamma(c))] \tag{4.8}
\end{equation*}
$$

From (4.8), it follows

$$
|4 f(u)-4 f(c u)| \leq 2 \delta+2 \theta[\psi(\gamma(c u))+\psi(\gamma(c))]
$$

Now taking into account (4.4) and relation $c^{2}=1$ we get

$$
\begin{equation*}
\left|f\left(u^{c} u\right)-4 f(u)\right| \leq 2 \delta+2 \theta[\psi(\gamma(c u))+\psi(\gamma(c))] \tag{4.9}
\end{equation*}
$$

Lemma 4.1. Let G be an arbitrary group and $f \in P Q_{\psi, \gamma}(G)$. For $u, c \in G$, let $c^{2}=1$ and $u^{c} u=u u^{c}$. Then

$$
\begin{equation*}
f\left(u^{c} u\right)=4 f(u) \tag{4.10}
\end{equation*}
$$

Proof. For any $n \in \mathrm{~N}$, we have

$$
\begin{aligned}
n^{2}\left|f\left(u^{c} u\right)-4 f(u)\right| & =\left|f\left(\left(u^{c} u\right)^{n}\right)-4 f\left(u^{n}\right)\right| \\
& =\left|f\left(\left(u^{n}\right)^{c} u^{n}\right)-4 f\left(u^{n}\right)\right| \\
& \leq \delta+\theta\left[\psi\left(\gamma\left(c u^{n}\right)\right)+\psi\left(\gamma\left(u^{n}\right)\right)\right] \\
& \leq \delta+\theta\left[\psi(\gamma(c))+\psi\left(\gamma\left(u^{n}\right)\right)+\psi(d)+\psi\left(\gamma\left(u^{n}\right)\right)\right] \\
& \leq \delta+\theta[\psi(\gamma(c))+\psi(d)+2 \psi(n(\gamma(u)+d))] \\
& \leq \delta+\theta[\psi(\gamma(c))+\psi(d)+2 n \psi(\gamma(u)+d)] .
\end{aligned}
$$

Hence

$$
\left.\left|f\left(u^{c} u\right)-4 f(u)\right| \leq \frac{\delta}{n^{2}}+\frac{\theta}{n^{2}}[\psi(\gamma(c))+\psi(d)]+2 \theta \frac{n}{n^{2}} \psi(\gamma(u)+d)\right]
$$

Therefore, by letting $n \rightarrow \infty$, we see that

$$
f\left(u^{c} u\right)=4 f(u)
$$

and the proof is now complete.
Suppose that A and B arbitrary groups. For any $b \in B$ let $A(b)$ be the group isomorphic to A under isomorphism $a \rightarrow a(b)$. We denote by $H=A^{(B)}=\prod_{b \in B} A(b)$ the direct product of the group $A(b)$. Cearly, if $a\left(b_{1}\right) a\left(b_{2}\right) \cdots a\left(b_{k}\right)$ is some element of H, then for $b \in B$ the mapping

$$
b^{*}: a\left(b_{1}\right) a\left(b_{2}\right) \cdots a\left(b_{k}\right) \rightarrow a\left(b_{1} b\right) a\left(b_{2} b\right) \cdots a\left(b_{k} b\right)
$$

is an automorphism of H, and the mapping $b \rightarrow b^{*}$ is an embedding of B in Aut H. Hence, we can form a semidirect product $G=B \cdot H$. This group is the wreath product of the groups A and B and will be denoted by $G=A$ 亿 B. We shell identify the group A with subgroup $A(1)$ of H, where 1 is unit element of B. Thus, we may assume that A is a subgroup of H.

Let $\gamma_{A}: A \rightarrow \mathrm{R}_{0}^{+}$and $\gamma_{A}(x y) \leq \gamma_{A}(x)+\gamma_{A}(y)$ for any $x, y \in A$. Let $\gamma_{B}: B \rightarrow \mathrm{R}_{0}^{+}$such that $\gamma_{B}(x y) \leq \gamma_{B}(x)+\gamma_{B}(y)$ for any $x, y \in B$. Let γ be an extension of the function γ_{A} from A to H defined by

$$
\begin{align*}
& \gamma\left(a_{1}\left(b_{1}\right) a_{2}\left(b_{2}\right) \cdots a_{m}\left(b_{m}\right)\right)=\sum_{i=1}^{m} \gamma_{A}\left(a_{i}\right), \tag{4.11}\\
& \gamma\left(b \cdot a_{1}\left(b_{1}\right) a_{2}\left(b_{2}\right) \cdots a_{m}\left(b_{m}\right)\right)=\gamma_{B}(b)+\gamma\left(a_{1}\left(b_{1}\right) a_{2}\left(b_{2}\right) \cdots a_{m}\left(b_{m}\right)\right) . \tag{4.12}
\end{align*}
$$

Let C be the group of order 2 with generator c. Consider the group $A \imath C$.
Lemma 4.2. If for some $a_{1}, b_{1} \in A$ we have equality

$$
\left|f\left(a_{1} b_{1}\right)+f\left(a_{1} b_{1}^{-1}\right)-2 f\left(a_{1}\right)-2 f\left(b_{1}\right)\right|=\delta>0,
$$

then there exist $x, y \in H$ such that

$$
\left|f(x y)+f\left(x y^{-1}\right)-2 f(x)-2 f(y)\right|=4 \delta .
$$

Proof. Let $u=a_{1} b_{1}$. Then $u^{c} u=u u^{c}$. Using relation (4.10) we get

$$
\begin{aligned}
& f\left(a_{1} a_{1}^{c} b_{1} b_{1}^{c}\right)+f\left(a_{1} a_{1}^{c}\left(b_{1}^{-1}\right)^{c} b_{1}^{-1}\right)-2 f\left(a_{1} a_{1}^{c}\right)-2 f\left(b_{1} b_{1}^{c}\right) \\
= & f\left(a_{1} b_{1} a_{1}^{c} b_{1}^{c}\right)+f\left(a_{1} b_{1}^{-1} a_{1}^{c}\left(b_{1}^{-1}\right)^{c}\right)-2 f\left(a_{1} a_{1}^{c}\right)-2 f\left(b_{1} b_{1}^{c}\right) \\
= & 4 f\left(a_{1} b_{1}\right)+4 f\left(a_{1} b_{1}^{-1}\right)-8 f\left(a_{1}\right)-8 f\left(b_{1}\right) \\
= & 4 \delta .
\end{aligned}
$$

The proof is completed.

Theorem 4.3. Let A be a group and $\gamma: A \rightarrow R_{0}^{+}$be a function satisfying relation $\gamma(x y) \leq \gamma(x)+\gamma(y)$ for all $x, y \in A$, then A can be embedded into a group G such that the equation (3.1) is (ψ, γ)-stable on G.

Proof. Let C_{i} denotes a group of order two for any $i \in \mathrm{~N}$. Define function γ on C_{i} as zero function. Consider a chain of groups:

$$
A_{1}=A, \quad A_{2}=A_{1} \swarrow C_{1}, \quad A_{3}=A_{2} \swarrow C_{2}, \ldots, \quad A_{k+1}=A_{k} \swarrow C_{k}, \ldots
$$

Now define the following chain of embeddings:

$$
\begin{equation*}
A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow \cdots \rightarrow A_{k+1} \rightarrow \ldots \tag{4.13}
\end{equation*}
$$

by identifying A_{k} with $A_{k}(1)$ - a subgroup of A_{k+1}. Let G be the direct limit of (4.13). Then $G=\cup_{k \in \mathrm{~N}} A_{k}$ and

$$
A_{1} \subset A_{2} \subset \cdots \subset A_{k} \subset A_{k+1} \subset \ldots \ldots \subset G
$$

Let us extend function γ from group A_{i} onto A_{i+1} by the rule mentioned in (4.11) and (4.12)). Let $f \in P Q_{\psi, \gamma}(G)$. Suppose that there are a_{1}, b_{1} in A_{1}, such that

$$
\left|f\left(a_{1} b_{1}\right)+f\left(a_{1} b_{1}^{-1}\right)-2 f\left(a_{1}\right)-2 f\left(b_{1}\right)\right|=\delta>0
$$

Put $a_{2}=a_{1} a_{1}^{c_{1}}, b_{2}=b_{1} b_{1}^{c_{1}}$. Then by Lemma 4.2 we get

$$
\left|f\left(a_{2} b_{2}\right)+f\left(a_{2} b_{2}^{-1}\right)-2 f\left(a_{2}\right)-2 f\left(b_{2}\right)\right|=4 \delta
$$

Furthermore, for any $k \in \mathrm{~N}$, we set $a_{k+1}=a_{k} a_{k}^{c_{k}}, b_{k+1}=b_{k} b_{k}^{c_{k}}$. Using Lemma $4.2 k$ times, we obtain

$$
\left|f\left(a_{k+1} b_{k+1}\right)+f\left(a_{k+1} b_{k+1}^{-1}\right)-2 f\left(a_{k+1}\right)-2 f\left(b_{k+1}\right)\right|=4^{k} \delta
$$

From the way of extending γ (see (4.11) and (4.12)), it follows that

$$
\gamma\left(a_{2}\right)=\gamma\left(a_{1} a_{1}^{c_{1}}\right)=\gamma\left(a_{1}\right)+\gamma\left(a_{1}^{c_{1}}\right)=2 \gamma\left(a_{1}\right) .
$$

Similarly, $\gamma\left(b_{2}\right)=2 \gamma\left(b_{1}\right)$. Using induction on k, we get $\gamma\left(a_{k+1}\right)=2^{k} \gamma\left(a_{1}\right)$ and $\gamma\left(b_{k+1}\right)=2^{k} \gamma\left(b_{1}\right)$.

Now if r and θ nonnegative numbers, such that for any $x, y \in G$, we have relation

$$
\left|f(x y)+f\left(x y^{-1}\right)-2 f(x)-2 f(y)\right| \leq r+\theta[\psi(\gamma(x))+\psi(\gamma(y))]
$$

then

$$
\begin{aligned}
4^{k} \delta & =\left|f\left(a_{k+1} b_{k+1}\right)+f\left(a_{k+1} b_{k+1}^{-1}\right)-2 f\left(a_{k+1}\right)-2 f\left(b_{k+1}\right)\right| \\
& \leq r+\theta\left[\psi\left(\gamma\left(a_{k+1}\right)\right)+\psi\left(\gamma\left(b_{k+1}\right)\right)\right] \\
& =r+\theta\left[\psi\left(2^{k} \gamma\left(a_{1}\right)\right)+\psi\left(2^{k} \gamma\left(b_{1}\right)\right)\right] \\
& \leq r+2^{k} \theta\left[\psi\left(\gamma\left(a_{1}\right)\right)+\psi\left(\gamma\left(b_{1}\right)\right)\right] .
\end{aligned}
$$

Therefore

$$
\delta \leq \frac{r}{4^{k}}+\theta \frac{2^{k}}{4^{k}}\left[\psi\left(\gamma\left(a_{1}\right)\right)+\psi\left(\gamma\left(b_{1}\right)\right)\right] .
$$

Because of the last relation is true for any $k \in \mathbb{N}$ we obtain $\delta=0$. So $\left.f\right|_{A_{1}} \in Q\left(A_{1}\right)$. Similarly, we verify that $\left.f\right|_{A_{k}} \in Q\left(A_{k}\right)$ for any $k \in \mathbb{N}$. Therefore $f \in Q(G)$. The proof is now complete.

References

[1] T. Aoki, On the stability of the linear transformationin Banach spaces, J. Math. Soc. Japan 2 (1950) 64-66.
[2] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
[3] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
[4] S. Czerwik, The stability of the quadratic functional equation, In:Stability of Mappings of Hyers-Ulam Type (ed. Th. M. Rassias \& J. Tabor), Hadronic Press, Florida, 1994, pp. 81-91.
[5] S. Czerwik and K. Dlutek, Quadratic difference operators in L_{p} spaces, Aequationes Math. 67 (20044), 1-11.
[6] S. Czerwik and K. Dlutek, Stability of the quadratic functional equation in Lipschitz spaces, J. Math. Anal. Appli. 293 (2004), 79-88.
[7] B. R. Ebanks, PL. Kannappan and P. K. Sahoo, A common generalization of functional equations characterizing normed and quasi-inner-product spaces, Canad. Math. Bull. 35 (1992), 321-327.
[8] V. A. Faiziev, Th. M. Rassias and P. K. Sahoo, The space of (ψ, γ) additive mappings of semigroups, Trans. Amer. Math. Soc, 2002, v.354, no.11, pp.4455-4472.
[9] V. A. Faïziev and P. K. Sahoo, On the space of (ψ, γ)-pseudo-Jensen mapping on groups, Nonlinear Funct. Anal. And Appl., vol.11, no.5, (2006), pp 759-791.
[10] I. Fenyő, On an inequality of P. W. Cholewa, In:General Inequalities 5 (ed. W. Walter), Birkhauser, Basel, 1987, pp. 277-280.
[11] R. Ger, Functional inequalities stemming from stability questions, In: General Inequalities 6 (ed. W. Walter), Birkhauser, Basel, 1992, pp. 227240.
[12] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[13] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston, 1998.
[14] S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126-137.
[15] S.-M. Jung, Stability of the quadratic equation of Pexider type, Abh. Math. Sem. Univ. Hamburg 70 (2000), 175-190.
[16] S.-M. Jung and P. K. Sahoo, Stability of a functional equation of Drygas, Aequationes Math. 64 (2002), 263-273.
[17] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 1978, 72, pp. 297-300.
[18] Th. M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai Math. 43 (1998), 89-124.
[19] F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
[20] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.

[^0]: *2000 Mathematics Subject Classification. Primary 39B82.
 \dagger E-mail: valeriy.faiz@mail.ru
 ${ }^{\ddagger}$ E-mail: sahoo@louisville.edu

