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Abstract

This paper deals with the existence, uniqueness and other properties
of the solutions of certain Volterra and Fredholm type integrodifferential
equations. The well known Banach fixed point theorem coupled with
Bielcki type norm and the integral inequalities with explicit estimates
are used to establish the results.
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1. Introduction

Consider the nonlinear Volterra and Fredholm integrodifferential equations of
the forms

x (t) = g (t) +

t∫
a

f (t, s, x (s) , x′ (s)) ds, (1.1)
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and

x (t) = g (t) +

b∫
a

f (t, s, x (s) , x′ (s)) ds, (1.2)

for−∞ < a ≤ t ≤ b <∞, where x, g, f are real vectors with n components and
′ denotes the derivative. Let Rn denotes the n-dimensional Euclidean space
with appropriate norm denoted by |.| and R the set of real numbers. Let
I = [a,∞) , J = [a, b] , R+ = [0,∞) be the given subsets of R and C (S1, S2)
denotes the class of continuous functions from the set S1 to the set S2 . For
−∞ < a ≤ s ≤ t ≤ b < ∞, u, v ∈ Rn , the functions g(t) and f(t, s, u, v) are
continuous and are continuIusly differentiable with respect to t.

The literature concerning the Volterra and Fredholm integral equations of
the forms (1.1) and (1.2) when the function f is of the form f(t, s, x) is par-
ticularly rich. A good deal of information on such equations may be found in
[3,5,6,8,12] and some of the references cited therein. The purpose of this paper
is to study the existence, uniqueness and other properties of solutions of equa-
tions (1.1) and (1.2) under various assumptions on the functions involved in
equations (1.1) and (1.2). The main tools employed in the analysis are based
on the applications of the well known Banach fixed point theorem (see [5, p.
37]) coupled with Bielcki type norm (see [2]) and the integral inequalities with
explicit estimates given in [10, p. 20] and [11, p. 41].

2. Existence and uniqueness

By a solution of equation (1.1) or (1.2) we mean a continuous function x(t)
for −∞ < a ≤ t ≤ b <∞ which is continuously differentiable with respect to
t and satisfy the corresponding equation (1.1) or (1.2). For every continuous
function x(t) in Rn together with its continuous first derivative x′ (t) for −∞ <
a ≤ t ≤ b <∞ we denote by |x (t)|1 = |x (t)|+|x′ (t)| . Let E be a space of those
continuous functions x(t) in Rn together with its continuous first derivative
x′ (t) in Rn for −∞ < a ≤ t ≤ b <∞ which fulfil the condition

|x (t)|1 = O (exp (λt)) (2.1)

where λ is a positive constant. In the space E we define the norm (see [2,9])

|x|E =
sup

−∞ < a ≤ t ≤ b <∞ {|x (t)|1 exp (−λt)} . (2.2)
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It is easy to see that E with the norm defined in (2.2) is a Banach space. We
note that the condition (2.1) implies that there is a constant N ≥ 0 such that

|x (t)|1 ≤ N exp (λt) .

Using this fact in (2.2) we observe that

|x|E ≤ N. (2.3)

We need the following special versions of the inequalities given in [10, p. 20]
and [11, p. 41]. We shall state them in the following lemmas for completeness.

Lemma 1. Let u (t) , p (t) ∈ C (I, R+) , k (t, σ) , ∂
∂t
k (t, σ) ∈ C (D,R+) where

D = {(t, σ) ∈ I2 : a ≤ σ ≤ t <∞} . If

u (t) ≤ p (t) +

t∫
a

k (t, σ)u (σ)dσ,

for t ∈ I, then

u (t) ≤ p (t) +

t∫
a

B (σ) exp

 t∫
σ

A (τ) dτ

dσ,
for t ∈ I, where

A (t) = k (t, t) +

t∫
a

∂

∂t
k (t, s)ds, (2.4)

B (t) = k (t, t) p (t) +

t∫
a

∂

∂t
k (t, s) p (s)ds, (2.5)

for t ∈ I.

Lemma 2. Let u (t) , p (t) , q (t) , e (t) ∈ C (J,R+) and suppose that

u (t) ≤ p (t) + q (t)

b∫
a

e (s)u (s)ds,
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for t ∈ J. If

d =

b∫
a

e (s) q (s) ds < 1, (2.6)

then

u (t) ≤ p (t) + q (t)

 1

1− d

b∫
a

e (s) p (s) ds

 ,

for t ∈ J.

The following theorem concerning the existence of a unique solution of equa-
tion (1.1) holds.

Theorem 1. Assume that (i) the function f in equation (1.1) and its deriva-
tive with respect to t satisfy the conditions

|f (t, s, u, v)− f (t, s, ū, v̄)| ≤ h1 (t, s) [|u− ū|+ |v − v̄|] , (2.7)

∣∣∣∣ ∂∂tf (t, s, u, v)− ∂

∂t
f (t, s, ū, v̄)

∣∣∣∣ ≤ h2 (t, s) [|u− ū|+ |v − v̄|] , (2.8)

where for i = 1, 2 and a ≤ s ≤ t <∞, hi (t, s) ∈ C (I2, R+) ,

(ii) there exist nonnegative constants α1, α2 such that α1 + α2 < 1 and

t∫
a

h1 (t, s) exp (λs) ds ≤ α1 exp (λt) , (2.9)

h1 (t, t) exp (λt) +

t∫
a

h2 (t, s) exp (λs) ds ≤ α2 exp (λt) , (2.10)

for t ∈ I, where λ is as given in (2.1),
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(iii) there exist nonnegative constants P1, P2 such that

|g (t)|+
t∫

a

|f (t, s, 0, 0)| ds ≤ P1 exp (λt) , (2.11)

|g′ (t)|+ |f (t, s, 0, 0)|+
t∫

a

∣∣∣∣ ∂∂tf (t, s, 0, 0)

∣∣∣∣ ds ≤ P2 exp (λt) , (2.12)

where g, f are defined in equation (1.1) and λ is as given in (2.1).

Then equation (1.1) has a unique solution x(t) in E on I.

Proof. Let x (t) ∈ E and define the operator

(Tx) (t) = g (t) +

t∫
a

f (t, s, x (s) , x′ (s)) ds. (2.13)

Differentiating both sides of (2.13) with respect to t we get

(Tx)′ (t) = g′ (t) + f (t, t, x (t) , x′ (t)) +

t∫
a

∂

∂t
f (t, s, x (s) , x′ (s)) ds. (2.14)

Now, we show that Tx maps E into itself. Evidently, (Tx) ,(Tx)′ are contin-
uous on I and (Tx) , (Tx)′ ∈ Rn. We verify that (2.1) is fulfilled. From (2.13),
(2.14) and using the hypotheses and (2.3) we have

|(Tx) (t)| ≤ |g (t)|+
t∫

a

|f (t, s, x (s) , x′ (s))− f (t, s, 0, 0) +f (t, s, 0, 0)| ds

≤ |g (t)|+
t∫

a

|f (t, s, 0, 0)|ds+

t∫
a

h1 (t, s) |x (s)|1 ds

≤ P1 exp (λt) + |x|E

t∫
a

h1 (t, s) exp (λs) ds

≤ [P1 +Nα1] exp (λt) , (2.15)
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and ∣∣(Tx)′ (t)
∣∣ ≤ |g′ (t)|+ |f (t, t, x (t) , x′ (t))− f (t, t, 0, 0) + f (t, t, 0, 0)|

+

t∫
a

∣∣∣∣ ∂∂tf (t, s, x (s) , x′ (s))− ∂

∂t
f (t, s, 0, 0) +

∂

∂t
f (t, s, 0, 0)

∣∣∣∣ds
≤ |g′ (t)|+ |f (t, t, 0, 0)|+

t∫
a

∣∣∣∣ ∂∂tf (t, s, 0, 0)

∣∣∣∣ds+ h1 (t, t) |x (t)|1

+

t∫
a

h2 (t, s) |x (s)|1 ds

≤ P2 exp (λt) + |x|E h1 (t, t) exp (λt) + |x|E

t∫
a

h2 (t, s) exp (λs) ds

≤ [P2 +Nα2] exp (λt) . (2.16)

From (2.15) and (2.16) we get

|(Tx) (t)|1 ≤ [P1 + P2 +N (α1 + α2)] exp (λt) . (2.17)

From (2.17) it follows that Tx ∈ E . This proves that T maps E into itself.

Now, we verify that the operator T is a contraction map. Let x (t) , y (t) ∈ E.
From (2.13) and (2.14) and using the hypotheses we have

|(Tx) (t)− (Ty) (t)| ≤
t∫

a

|f (t, s, x (s) , x′ (s))− f (t, s, y (s) , y′ (s))|ds

≤
t∫

a

h1 (t, s) |x (s)− y (s)|1 ds

≤ |x− y|E

t∫
a

h1 (t, s) exp (λs) ds

≤ |x− y|E α1 exp (λt) , (2.18)
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and ∣∣(Tx)′ (t)− (Ty)′ (t)
∣∣ ≤ |f (t, t, x (t) , x′ (t))− f (t, t, y (t) , y′ (t))|

+

t∫
a

∣∣∣∣ ∂∂tf (t, s, x (s) , x′ (s))− ∂

∂t
f (t, s, y (s) , y′ (s))

∣∣∣∣ds
≤ h1 (t, t) |x (t)− y (t)|1 +

t∫
a

h2 (t, s) |x (s)− y (s)|1 ds

≤ |x− y|E h1 (t, t) exp (λt) + |x− y|E

t∫
a

h2 (t, s) exp (λs) ds

≤ |x− y|E α2 exp (λt) . (2.19)

From (2.18) and (2.19) we get

|(Tx) (t)− (Ty) (t)|1 ≤ |x− y|E (α1 + α2) exp (λt) . (2.20)

From (2.20) we obtain

|Tx− Ty|E ≤ (α1 + α2) |x− y|E .

Since α1 + α2 < 1 , it follows from Banach fixed point theorem (see [5,p. 37])
that T has a unique fixed point in E . The fixed point of T is however a
solution of equation (1.1). The proof is complete.

Our result on the existence of a unique solution of equation (1.2) is embod-
ied in the following theorem.

Theorem 2. Assume that (i) the function f in equation (1.2) and its deriva-
tive with respect to t satisfy the conditions

|f (t, s, u, v)− f (t, s, ū, v̄)| ≤ r1 (t, s) [|u− ū|+ |v − v̄|] , (2.21)∣∣∣∣ ∂∂tf (t, s, u, v)− ∂

∂t
f (t, s, ū, v̄)

∣∣∣∣ ≤ r2 (t, s) [|u− ū|+ |v − v̄|] , (2.22)

where for i = 1, 2 and a ≤ s ≤ t ≤ b, ri (t, s) ∈ C (J2, R+) ,
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(ii) there exist nonnegative constants β1, β2 such that β1 + β2 < 1 and

b∫
a

r1 (t, s) exp (λs) ds ≤ β1 exp (λt) , (2.23)

b∫
a

r2 (t, s) exp (λs) ds ≤ β2 exp (λt) , (2.24)

for t ∈ J, where λ is as given in (2.1).

(iii) there exist nonnegative constants Q1, Q2 such that

|g (t)|+
b∫

a

|f (t, s, 0, 0)| ds ≤ Q1 exp (λt) , (2.25)

|g′ (t)|+
b∫

a

∣∣∣∣ ∂∂tf (t, s, 0, 0)

∣∣∣∣ ds ≤ Q2 exp (λt) , (2.26)

where g, f are defined in equation (1.2) and λ is as given in (2.1).

Then equation (1.2) has a unique solution x(t) in E on J .

Proof. Let x (t) ∈ E and define the operator

(Sx) (t) = g (t) +

b∫
a

f (t, s, x (s) , x′ (s)) ds. (2.27)

Differentiating both sides of (2.27) with respect to t we get

(Sx)′ (t) = g′ (t) +

b∫
a

∂

∂t
f (t, s, x (s) , x′ (s)) ds. (2.28)

The rest of the proof follows by the similar arguments as in the proof of
Theorem 1 with suitable modifications. We omit the details.
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Remark 1. We note that the norm |.|E defined by (2.2) was first used by
Bielecki [2] in 1956 for proving global existence and uniqueness of solutions
of ordinary differential equations. For developments related to this topic, see
[4,7] and the references given therein.

Indeed, the following theorems are true concerning the uniqueness of solu-
tions of equations (1.1) and (1.2) without existence parts.

Theorem 3. Assume that the function f in equation (1.1) and its derivative
with respect to t satisfy the conditions (2.7) and (2.8). Further assume that
h1 (t, s) , h2 (t, s) are continuously differentiable with respect to t and are non-
negative and h1 (t, t) ≤ c, where c < 1 is a constant. Then the equation (1.1)
has at most one solution on I.

Proof. Let x(t) and y(t) be two solutions of equation (1.1). Then we have

|x (t)− y (t)|+ |x′ (t)− y′ (t)|

≤
t∫

a

|f (t, s, x (s) , x′ (s))− f (t, s, y (s) , y′ (s))|ds

+ |f (t, t, x (t) , x′ (t))− f (t, t, y (t) , y′ (t))|

+

t∫
a

∣∣∣∣ ∂∂tf (t, s, x (s) , x′ (s))− ∂

∂t
f (t, s, y (s) , y′ (s))

∣∣∣∣ds
≤

t∫
a

h1 (t, s) [|x (s)− y (s)|+ |x′ (s)− y′ (s)|]ds

+h1 (t, t) [|x (t)− y (t)|+ |x′ (t)− y′ (t)|]

+

t∫
a

h2 (t, s) [|x (s)− y (s)|+ |x′ (s)− y′ (s)|]ds. (2.29)
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From (2.29) and using the assumption h1 (t, t) ≤ c we observe that

|x (t)− y (t)|+ |x′ (t)− y′ (t)|

≤ 1

1− c

t∫
a

[h1 (t, s) + h2 (t, s)] [|x (s)− y (s)|+ |x′ (s)− y′ (s)|]ds. (2.30)

Now an application of Lemma 1 (when p(t) = 0 ) to (2.30) yields

|x (t)− y (t)|+ |x′ (t)− y′ (t)| ≤ 0,

and hence x (t) = y (t) . Thus there is at most one solution to equation (1.1)
on I .

Theorem 4. Assume that the function f in equation (1.2) and its deriva-
tive with respect to t satisfy the conditions (2.21) and (2.22) with ri (t, s) =
q (t) ei (s) for i = 1, 2 , where q, ei ∈ C (J,R+) and let

d1 =

b∫
a

[e1 (s) + e2 (s)]q (s) ds < 1.

Then the equation (1.2) has at most one solution on J .

Proof. Let x(t) and y(t) be two solutions of equation (1.2). Then we have

|x (t)− y (t)|+ |x′ (t)− y′ (t)|

≤
b∫

a

|f (t, s, x (s) , x′ (s))− f (t, s, y (s) , y′ (s))|ds

+

b∫
a

∣∣∣∣ ∂∂tf (t, s, x (s) , x′ (s))− ∂

∂t
f (t, s, y (s) , y′ (s))

∣∣∣∣ds
≤ q (t)

b∫
a

[e1 (s) + e2 (s)] [|x (s)− y (s)|+ |x′ (s)− y′ (s)|]ds. (2.31)

Now an application of Lemma 2 (when p(t) = 0 ) to (2.31) yields

|x (t)− y (t)|+ |x′ (t)− y′ (t)| ≤ 0,
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and hence x (t) = y (t) , which proves the uniqueness of solutions of equation
(1.2) on J .

3. Estimates on solutions

In this section we obtain estimates on the solutions of equations (1.1) and (1.2)
under some suitable conditions on the functions involved therein.

First, we shall give the following theorems concerning the estimates on the
solutions of equations (1.1) and (1.2).

Theorem 5. Assume that the functions g, f in equation (1.1) and their
derivatives with respect to t satisfy the conditions

|g (t)|+ |g′ (t)| ≤ r (t) , (3.1)

|f (t, s, u, v)| ≤ h1 (t, s) [|u|+ |v|] , (3.2)

∣∣∣∣ ∂∂tf (t, s, u, v)

∣∣∣∣ ≤ h2 (t, s) [|u|+ |v|] , (3.3)

where r (t) ∈ C (I, R+) and for i = 1, 2, a ≤ s ≤ t < ∞, hi (t, s) , ∂∂thi (t, s)
∈ C (I2, R+) . Let k̄ (t, s) = h1 (t, s) + h2 (t, s) and assume that h1 (t, t) ≤ c,
where c < 1 is a constant. If x(t) , t ∈ I is any solution of equation (1.1),
then

|x (t)|+ |x′ (t)| ≤ r (t)

1− c
+

t∫
a

B1 (σ) exp

 t∫
σ

A1 (τ) dτ

 dσ, (3.4)

for t ∈ I , where A1 (t) and B1 (t) are defined respectively by the right hand

sides of (2.4) and (2.5) by replacing k(t, s) by k̄(t,s)
1−c and p(t) by r(t)

1−c .



300 B. G Pachpatte

Proof. By using the fact that x (t) , t ∈ I is a solution of equation (1.1) and
hypotheses we have

|x (t)|+ |x′ (t)| ≤ |g (t)|+
t∫

a

|f (t, s, x (s) , x′ (s))| ds

+ |g′ (t)|+ |f (t, t, x (t) , x′ (t))|+
t∫

a

∣∣∣∣ ∂∂tf (t, s, x (s) , x′ (s))

∣∣∣∣ ds
≤ r (t) +

t∫
a

h1 (t, s) [|x (s)|+ |x′ (s)|] ds

+h1 (t, t) [|x (t)|+ |x′ (t)|] +

t∫
a

h2 (t, s) [|x (s)|+ |x′ (s)|] ds. (3.5)

From (3.5) and using the assumption h1 (t, t) ≤ c we observe that

|x (t)|+ |x′ (t)| ≤ r (t)

1− c
+

1

1− c

t∫
a

k̄ (t, s) [|x (s)|+ |x′ (s)|] ds. (3.6)

Now an application of Lemma 1 to (3.6) yields (3.4).

Theorem 6. Assume that the functions g, f involved in equation (1.2) and
their derivatives with respect to t satisfy the conditions

|g (t)|+ |g′ (t)| ≤ h (t) , (3.7)

|f (t, s, u, v)| ≤ q (t) e1 (s) [|u|+ |v|] , (3.8)∣∣∣∣ ∂∂tf (t, s, u, v)

∣∣∣∣ ≤ q (t) e2 (s) [|u|+ |v|] , (3.9)

where h (t) , q (t) , e1 (t) , e2 (t) ∈ C (J,R+) and let d1 be as in Theorem 4. If
x (t) , t ∈ J is any solution of equation (1.2), then

|x (t)|+ |x′ (t)| ≤ h (t) + q (t)

 1

1− d1

b∫
a

[e1 (s) + e2 (s)]h (s) ds

 , (3.10)

for t ∈ J.
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The proof follows by the similar arguments as in the proof of Theorem 5
and applying Lemma 2. We leave the details to the readers.

Remark 2. We note that the estimates obtained in (3.4) and (3.10) yield,
not only the bounds on the solutions of equations (1.1) and (1.2) , but also the
bounds on their derivatives. If the bounds on the right hand sides in (3.4) and
(3.10) are bounded, then the solutions of equations (1.1) and (1.2) and their
derivatives are bounded.

Next, we shall obtain the estimates on the solutions of equations (1.1) and
(1.2) assuming that the function f and its derivative with respect to t satisfy
Lipschitz type conditions.

Theorem 7. Assume that the function f and its derivative with respect to
t satisfy the conditions (2.7) and (2.8). Let for i = 1, 2 , hi (t, s) ,

∂
∂t
hi (t, s) ,

k̄ (t, s) , h1 (t, t) and c be as in Theorem 5 and

α (t) = |f (t, t, g (t) , g′ (t))|+
t∫

a

|f (t, s, g (s) , g′ (s))|+
t∫

a

∣∣∣∣ ∂∂tf (t, s, g (s) , g′ (s))

∣∣∣∣,
where g is defined as in equation (1.1). If x (t) , t ∈ I is any solution of
equation (1.1), then

|x (t)− g (t)|+ |x′ (t)− g′ (t)|

≤ α (t)

1− c
+

t∫
a

B2 (σ) exp

 t∫
σ

A1 (τ) dτ

dσ, (3.11)

for t ∈ I , where A1 (t) and B2 (t) are defined respectively by the right hand

sides of (2.4) and (2.5) , replacing k(t, s) by k̄(t,s)
1−c and p(t) by α(t)

1−c .
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Proof. Since x(t) is a solution of equation (1.1), by using the hypotheses we
have

|x (t)− g (t)| ≤
t∫

a

|f (t, s, x (s) , x′ (s))− f (t, s, g (s) , g′ (s))|ds

+

t∫
a

|f (t, s, g (s) , g′ (s))|ds

≤
t∫

a

|f (t, s, g (s) , g′ (s))|ds+

t∫
a

h1 (t, s) [|x (s)− g (s)|+ |x′ (s)− g′ (s)|]ds.

(3.12)

and

|x′ (t)− g′ (t)| ≤ |f (t, t, x (t) , x′ (t))− f (t, t, g (t) , g′ (t))|+ |f (t, t, g (t) , g′ (t))|

+

t∫
a

∣∣∣∣ ∂∂tf (t, s, x (s) , x′ (s))− ∂

∂t
f (t, s, g (s) , g′ (s))

∣∣∣∣ds
+

t∫
a

∣∣∣∣ ∂∂tf (t, s, g (s) , g′ (s))

∣∣∣∣ds
≤ |f (t, t, g (t) , g′ (t))|+

t∫
a

∣∣∣∣ ∂∂tf (t, s, g (s) , g′ (s))

∣∣∣∣ds
+h1 (t, t) [|x (t)− g (t)|+ |x′ (t)− g′ (t)|]

+

t∫
a

h2 (t, s) [|x (s)− g (s)|+ |x′ (s)− g′ (s)|]ds. (3.13)

From (3.12), (3.13) and using the assumption h1 (t, t) ≤ c we observe that

|x (t)− g (t)|+ |x′ (t)− g′ (t)|

≤ α (t)

1− c
+

1

1− c

t∫
a

k̄ (t, s) [|x (s)− g (s)|+ |x′ (s)− g′ (s)|]ds. (3.14)

Now an application of Lemma 1 to (3.14) yields (3.11).
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Theorem 8. Suppose that the hypotheses of Theorem 4 hold and let

ᾱ (t) =

b∫
a

|f (t, s, g (s) , g′ (s))|ds+

b∫
a

∣∣∣∣ ∂∂tf (t, s, g (s) , g′ (s))

∣∣∣∣ds,
for t ∈ J. If x(t) , t ∈ J. is any solution of equation (1.2), then

|x (t)− g (t)|+ |x′ (t)− g′ (t)|

≤ ᾱ (t) + q (t)

 1

1− d1

b∫
a

[e1 (s) + e2 (s)] ᾱ (s)ds

 , (3.15)

for t ∈ J.

The proof follows by the similar arguments as in the proof of Theorem 7
with suitable modifications. We omit the details.

4. Continuous dependence

In this section we shall deal with the continuous dependence of solutions of
equations (1.1) and (1.2) on the functions involved therein and also the con-
tinuous dependence of solutions of equations of the forms (1.1) and (1.2) on
parameters.

Consider the equations (1.1) and (1.2) and the corresponding Volterra and
Fredholm integral equations

y (t) = G (t) +

b∫
a

F (t, s, y (s) , y′ (s)) ds, (4.1)

and

y (t) = G (t) +

b∫
a

F (t, s, y (s) , y′ (s)) ds, (4.2)

for −∞ < a ≤ t ≤ b <∞, where y,G, F are real vectors with n components.
The functions G(t) and F (t, s, u, v) for −∞ < a ≤ s ≤ t ≤ b < ∞, u, v ∈ Rn

are continuous and are continuously differentiable with respect to t .
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The following theorems deals with the continuous dependence of solutions
of equations (1.1) and (1.2) on the functions involved therein.

Theorem 9. Assume that the function f in equation (1.1) and its derivative
with respect to t satisfy the conditions (2.7) and (2.8). Let for i = 1, 2 ,
hi (t, s) ,

∂
∂t
hi (t, s) , k̄ (t, s) , h1 (t, t) and c be as in Theorem 5. Suppose that

|g (t)−G (t)|+
t∫

a

|f (t, s, y (s) , y′ (s))− F (t, s, y (s) , y′ (s))| ds ≤ r1 (t) ,

(4.3)

|g′ (t)−G′ (t)|+ |f (t, t, y (t) , y′ (t))− F (t, t, y (t) , y′ (t))|

+

t∫
a

∣∣∣∣ ∂∂tf (t, s, y (s) , y′ (s))− ∂

∂t
F (t, s, y (s) , y′ (s))

∣∣∣∣ ds ≤ r2 (t) , (4.4)

where g, f and G,F are the functions involved in equations (1.1) and (4.1) and
r1 (t) , r2 (t) ∈ C (I, R+) . Let x(t) and y(t) , t ∈ I be the solutions of equa-
tions (1.1) and (4.1) respectively. Then the solution x(t) , t ∈ I of equation
(1.1) depends continuously on the functions involved on the right hand side of
equation (1.1).

Proof. Using the facts that x(t) and y(t) are the solutions of equations (1.1)
and (4.1) and the hypotheses we have

|x (t)− y (t)| ≤ |g (t)−G (t)|+
t∫

a

|f (t, s, x (s) , x′ (s))− f (t, s, y (s) , y′ (s))|ds

+

t∫
a

|f (t, s, y (s) , y′ (s))− F (t, s, y (s) , y′ (s))|ds

≤ r1 (t) +

t∫
a

h1 (t, s) [|x (s)− y (s)|+ |x′ (s)− y′ (s)|]ds, (4.5)
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and

|x′ (t)− y′ (t)| ≤ |g′ (t)−G′ (t)|+ |f (t, t, x (t) , x′ (t))− f (t, t, y (t) , y′ (t))|
+ |f (t, t, y (t) , y′ (t))− F (t, t, y (t) , y′ (t))|

+

t∫
a

∣∣∣∣ ∂∂tf (t, s, x (s) , x′ (s))− ∂

∂t
f (t, s, y (s) , y′ (s))

∣∣∣∣ds
+

t∫
a

∣∣∣∣ ∂∂tf (t, s, y (s) , y′ (s))− ∂

∂t
F (t, s, y (s) , y′ (s))

∣∣∣∣ds
≤ r2 (t) + h1 (t, t) [|x (t)− y (t)|+ |x′ (t)− y′ (t)|]

+

t∫
a

h2 (t, s) [|x (s)− y (s)|+ |x′ (s)− y′ (s)|]ds. (4.6)

From (4.5) and (4.6) and using the assumption that h1 (t, t) ≤ c, it is easy to
observe that

|x (t)− y (t)|+ |x′ (t)− y′ (t)|

≤ r1 (t) + r2 (t)

1− c
+

1

1− c

t∫
a

k̄ (t, s) [|x (s)− y (s)|+ |x′ (s)− y′ (s)|]ds. (4.7)

Now an application of Lemma 1 to (4.7) yields

|x (t)− y (t)|+|x′ (t)− y′ (t)| ≤ r1 (t) + r2 (t)

1− c
+

t∫
a

B3 (σ) exp

 t∫
σ

A1 (τ) dτ

dσ,
(4.8)

for t ∈ I, where A1 (t) and B3 (t) are defined respectively by the right hand

sides of (2.4) and (2.5), replacing k(t, s) by k̄(t,s)
1−c and p(t) by r1(t)+r2(t)

1−c . From
(4.8) it follows that the solutions of equation (1.1) depends continuously on
the functions involved on the right hand side of equation (1.1).

Theorem 10. Assume that the hypotheses of Theorem 4 hold. Suppose that

|g (t)−G (t)|+
b∫

a

|f (t, s, y (s) , y′ (s))− F (t, s, y (s) , y′ (s))|ds ≤ r̄1 (t) , (4.9)
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|g′ (t)−G′ (t)|+
b∫

a

∣∣∣∣ ∂∂tf (t, s, y (s) , y′ (s))− ∂

∂t
F (t, s, y (s) , y′ (s))

∣∣∣∣ds ≤ r̄2 (t) ,

(4.10)
where g, f and G,F are the functions involved in equations (1.2) and (4.2) and
r̄1 (t) , r̄2 (t) ∈ C (J,R+) . Let x(t) and y(t) , t ∈ J be the solutions of equa-
tions (1.2) and (4.2) respectively. Then the solution x(t) , t ∈ J of equation
(1.2) depends continuously on the functions involved on the right hand side of
equation (1.2).

The proof follows by closely looking at the proof of Theorem 9 and by
making use of Lemma 2. Here, we omit the details.

Next, we consider the following Volterra and Fredholm type integral equa-
tions

z (t) = g (t) +

t∫
a

f (t, s, z (s) , z′ (s) , µ)ds, (4.11)

z (t) = g (t) +

t∫
a

f (t, s, z (s) , z′ (s) , µ0)ds, (4.12)

and

z (t) = g (t) +

b∫
a

f (t, s, z (s) , z′ (s) , µ)ds, (4.13)

z (t) = g (t) +

b∫
a

f (t, s, z (s) , z′ (s) , µ0)ds, (4.14)

for −∞ < a ≤ t ≤ b < ∞, where z, g, f are vectors with n components and
µ, µ0 are real parameters. For −∞ < a ≤ s ≤ t ≤ b < ∞, u, v ∈ Rn, λ ∈
R, the functions g(t) and f (t, s, u, v, λ) are continuous and are continuously
differentiable with respect to t .

Finally, we present the following theorems which deals with the continu-
ous dependency of solutions of equations (4.11), (4.12) and (4.13), (4.14) on
parameters.
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Theorem 11. Assume that the function f in equations (4.11),(4.12) and its
derivative with respect to t satisfy the conditions

|f (t, s, u, v, µ)− f (t, s, ū, v̄, µ)| ≤ h1 (t, s) [|u− ū|+ |v − v̄|] , (4.15)

|f (t, s, u, v, µ)− f (t, s, u, v, µ0)| ≤ e1 (t, s) |µ− µ0| , (4.16)∣∣∣∣ ∂∂tf (t, s, u, v, µ)− ∂

∂t
f (t, s, ū, v̄, µ)

∣∣∣∣ ≤ h2 (t, s) [|u− ū|+ |v − v̄|] , (4.17)∣∣∣∣ ∂∂tf (t, s, u, v, µ)− ∂

∂t
f (t, s, u, v, µ0)

∣∣∣∣ ≤ e2 (t, s) |µ− µ0| , (4.18)

where h1, h2, e1, e2 ∈ C (I2, R+) . Let, for i = 1, 2 , hi (t, s) ,
∂
∂t
hi (t, s) , k̄ (t, s) , h1 (t, t)

and c be as in Theorem 5 and

β (t) = e1 (t, t) +

t∫
a

[e1 (t, s) + e2 (t, s)]ds.

Let z1 (t) and z2 (t) be the solutions of equations (4.11) and (4.12) respectively.
Then

|z1 (t)− z2 (t)|+|z′1 (t)− z′2 (t)| ≤ |µ− µ0|
1− c

β (t)+

t∫
a

B4 (σ) exp

 t∫
σ

A1 (τ) dτ

 dσ,

(2.19)
where A1 (t) and B4 (t) are defined respectively by the right hand sides of (2.4)

and (2.5), replacing k(t, s) by k̄(t,s)
1−c and p(t) by |µ−µ0|

1−c β (t) .

Proof. Let w (t) = z1 (t)− z2 (t) . Using the facts that z1 (t) and z2 (t) are
the solutions of equations (4.11) and (4.12) we have

|w (t)| ≤
t∫

a

|f (t, s, z1 (s) , z′1 (s) , µ)− f (t, s, z2 (s) , z′2 (s) , µ)|ds

+

t∫
a

|f (t, s, z2 (s) , z′2 (s) , µ)− f (t, s, z2 (s) , z′2 (s) , µ0)|ds

≤
t∫

a

h1 (t, s) [|w (s)|+ |w′ (s)|] ds+

t∫
a

e1 (t, s) |µ− µ0| ds (4.20)



308 B. G Pachpatte

and

|w′ (t)| ≤ |f (t, t, z1 (t) , z′1 (t) , µ)− f (t, t, z2 (t) , z′2 (t) , µ)|
+ |f (t, t, z2 (t) , z′2 (t) , µ)− f (t, t, z2 (t) , z′2 (t) , µ0)|

+

t∫
a

∣∣∣∣ ∂∂tf (t, s, z1 (s) , z′1 (s) , µ)− ∂

∂t
f (t, s, z2 (s) , z′2 (s) , µ)

∣∣∣∣ds
+

t∫
a

∣∣∣∣ ∂∂tf (t, s, z2 (s) , z′2 (s) , µ)− ∂

∂t
f (t, s, z2 (s) , z′2 (s) , µ0)

∣∣∣∣ds
≤ h1 (t, t) [|w (t)|+ |w′ (t)|] + e1 (t, t) |µ− µ0|

+

t∫
a

h2 (t, s) [|w (s)|+ |w′ (s)|] ds+

t∫
a

e2 (t, s) |µ− µ0| ds. (4.21)

From (4.20) and (4.21) and using the assumption h1 (t, t) ≤ c, it is easy to
observe that

|w (t)|+ |w′ (t)| ≤ |µ− µ0|
1− c

β (t) +
1

1− c

t∫
a

k (t, s) [|w (s)|+ |w′ (s)|] ds. (4.22)

Now an application of Lemma 1 to (4.22) yields (4.19), which shows the de-
pendency of solutions of equations (4.11) and (4.12) on parameters.

Theorem 12. Assume that the function f in equations (4.13), (4.14) and
its derivative with respect to t satisfy the conditions

|f (t, s, u, v, µ)− f (t, s, ū, v̄, µ)| ≤ q̄ (t) ē1 (s) [|u− ū|+ |v − v̄|] , (4.23)

|f (t, s, u, v, µ)− f (t, s, u, v, µ0)| ≤ γ1 (t, s) |µ− µ0| , (4.24)∣∣∣∣ ∂∂tf (t, s, u, v, µ)− ∂

∂t
f (t, s, ū, v̄, µ)

∣∣∣∣ ≤ q̄ (t) ē2 (s) [|u− ū|+ |v − v̄|] , (4.25)

∣∣∣∣ ∂∂tf (t, s, u, v, µ)− ∂

∂t
f (t, s, u, v, µ0)

∣∣∣∣ ≤ γ2 (t, s) |µ− µ0| , (4.26)
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where q̄, ē1, ē2 ∈ C (J,R+) , γ1, γ2 ∈ C (J2, R+) . Let

γ (t) =

b∫
a

[γ1 (t, s) + γ2 (t, s)]ds,

and suppose that

d2 =

b∫
a

[ē1 (s) + e2 (s)]q̄ (s) ds < 1.

Let z1 (t) and z2 (t) be the solutions of equations (4.13) and (4.14) respectively.
Then

|z1 (t)− z2 (t)|+ |z1 (t)− z2 (t)|

≤ |µ− µ0|

γ (t) + q̄ (t)

 1

1− d2

b∫
a

[ē1 (s) + e2 (s)] γ (s) ds


 , (4.27)

for t ∈ J.

The proof is similar to that of Theorem 11 with suitable modifications and
by making use of Lemma 2. We omit the details.

Remark 3. In a recent paper [1] , the authors have studied the existence,
uniqueness and approximation of solutions of equation (1.2) in a Banach space
by using Perov’s fixed point theorem, the method of successive approximations
and a trapezoidal quadrature rule. We note that our approach to the study of
equations (1.1) and (1.2) is different and we believe that the results given here
are of independent interest.
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inequality to netural Fredholm Integro-differential equations in Banach
spaces, J. Inequal. Pure and Appl. Math. 7(5) Art.173, 2006.



310 B. G Pachpatte

[2] A. Bielecki, Un remarque sur l’application de la méthode de Banach-
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