On a Double Inequality for the Dirichlet Beta Function *

P. Cerone ${ }^{\ddagger}$
School of Computer Science and Mathematics, Victoria University, PO Box 14428, Melbourne 8001, Victoria, Australia.

Received February 22, 2007, Accepted March 26, 2007.

Abstract

Let $\beta(x)$ be the Dirichlet beta function. Then for all $x>0$ $$
c<3^{x+1}[\beta(x+1)-\beta(x)]<d
$$ with the best possible constant factors $$
c=3\left(\frac{\pi}{4}-\frac{1}{2}\right) \approx 0.85619449 \text { and } d=2
$$

The above result, and some variants, are used to approximate β at even integers in terms of known β at odd integers.

Keywords and Phrases: Dirichlet Beta function, Inequalities, Approximation, Dirichlet L-function.

[^0]
1. Introduction

The Dirichlet beta function or Dirichlet L-function is given by [5]

$$
\begin{equation*}
\beta(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{x}}, \quad x>0 \tag{1.1}
\end{equation*}
$$

where $\beta(2)=G$, Catalan's constant.
The beta function may be evaluated explicitly at positive odd integer values of x, namely,

$$
\begin{equation*}
\beta(2 n+1)=(-1)^{n} \frac{E_{2 n}}{2(2 n)!}\left(\frac{\pi}{2}\right)^{2 n+1} \tag{1.2}
\end{equation*}
$$

where E_{n} are the Euler numbers.
The Dirichlet beta function may be analytically continued over the whole complex plane by the functional equation

$$
\beta(1-z)=\left(\frac{2}{\pi}\right)^{z} \sin \left(\frac{\pi z}{2}\right) \Gamma(z) \beta(z) .
$$

The function $\beta(z)$ is defined everywhere in the complex plane and has no singularities, unlike the Riemann zeta function, $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$, which has a simple pole at $s=1$.

The Dirichlet beta function and the zeta function have important applications in a number of branches of mathematics, and in particular in Analytic number theory. See for example [2], [4] - [7].

Further, $\beta(x)$ has an alternative integral representation [5, p. 56]

$$
\begin{equation*}
\beta(x)=\frac{1}{\Gamma(x)} \int_{0}^{\infty} \frac{t^{x-1}}{e^{t}+e^{-t}} d t, \quad x>0 \tag{1.3}
\end{equation*}
$$

where

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t
$$

The function $\beta(x)$ is also connected to prime number theory [5] which may perhaps be best summarised by

$$
\begin{aligned}
\beta(x) & =\prod_{p \text { prime } p \equiv 1(\bmod 4)}\left(1-p^{-x}\right)^{-1} \cdot \prod_{p \text { prime }, p \equiv 3(\bmod 4)}\left(1+p^{-x}\right)^{-1} \\
& =\prod_{p \text { odd }, p \text { prime }}\left(1-(-1)^{\frac{p-1}{2}} p^{-x}\right)^{-1},
\end{aligned}
$$

where the rearrangement of factors is permitted because of absolute convergence.

It is the intention of the current article to present sharp bounds for the secant slope of the $\beta(x)$ over a distance of 1 apart. This will enable an approximation of the beta function at even integers given that beta at odd integers is as in (1.2). Cerone et al. [3] utlised a similar philosophy in investigating the zeta function, however, one of the bounds was not sharp. Alzer [1] proved a tighter lower bound and proved the sharpness of both the upper and lower bounds.

2. An Identity and Bounds Involving the Beta Function

The following lemma will play a significant role in obtaining bounds for the Dirichlet beta function, $\beta(x)$.

Lemma 1. The following identity for the Dirichlet beta function holds. Namely,

$$
\begin{equation*}
P(x):=\frac{2}{\Gamma(x+1)} \int_{0}^{\infty} \frac{e^{-t}}{\left(e^{t}+e^{-t}\right)^{2}} \cdot t^{x} d t=\beta(x+1)-\beta(x) . \tag{2.1}
\end{equation*}
$$

Proof. From (1.3)

$$
x \Gamma(x) \beta(x)=\int_{0}^{\infty} \frac{x t^{x-1}}{e^{t}+e^{-t}} d t, \quad x>0
$$

which upon integration by parts gives

$$
\begin{equation*}
\Gamma(x+1) \beta(x)=\int_{0}^{\infty} t^{x} \cdot \frac{e^{t}-e^{-t}}{\left(e^{t}+e^{-t}\right)^{2}} d t \tag{2.2}
\end{equation*}
$$

Thus, from (1.3) and (2.2) upon simplification produces (2.1).
The following theorem produces sharp bounds for the secant slope of $\beta(x)$.
Theorem 1. For real numbers $x>0$, we have

$$
\begin{equation*}
\frac{c}{3^{x+1}}<\beta(x+1)-\beta(x)<\frac{d}{3^{x+1}}, \tag{2.3}
\end{equation*}
$$

with the best possible constants

$$
\begin{equation*}
c=3\left(\frac{\pi}{4}-\frac{1}{2}\right)=0.85619449 \ldots \text { and } d=2 \tag{2.4}
\end{equation*}
$$

Proof. Let $x>0$. We first establish the left inequality in (2.3). From (2.1) we note that $0<P(x)$ and consider

$$
\begin{equation*}
I=2 \int_{0}^{\infty} \frac{e^{-t}}{\left(e^{t}+e^{-t}\right)^{2}} d t \tag{2.5}
\end{equation*}
$$

That is, making the change of variable $u=e^{-t}$ gives

$$
I=2 \int_{0}^{1} \frac{u^{2}}{\left(1+u^{2}\right)^{2}} d u
$$

from which a further change of variable $u=\tan \theta$ produces

$$
\begin{equation*}
I=2 \int_{0}^{\frac{\pi}{4}} \sin ^{2} \theta d \theta=\frac{\pi}{4}-\frac{1}{2} \tag{2.6}
\end{equation*}
$$

From (2.1) and (2.5) we have

$$
\begin{aligned}
& \Gamma(x+1)\left[3^{x+1} P(x)-3 \cdot I\right] \\
= & 6\left[3^{x} \int_{0}^{\infty} \frac{e^{-t} \cdot t^{x}}{\left(e^{t}+e^{-t}\right)^{2}} d t-\Gamma(x+1) \int_{0}^{\infty} \frac{e^{-t}}{\left(e^{t}+e^{-t}\right)^{2}} d t\right] \\
= & 6\left[\int_{0}^{\infty} \frac{e^{-3 t}}{\left(1+e^{-2 t}\right)^{2}}\left[(3 t)^{x}-\Gamma(x+1)\right] d t\right] \\
= & 2 \int_{0}^{\infty} \frac{e^{-t}}{\left(1+e^{-\frac{2}{3} t}\right)^{2}}\left[t^{x}-\Gamma(x+1)\right] d t \\
= & 2 \int_{0}^{\infty} u(t, x) v(t) d t
\end{aligned}
$$

where

$$
\begin{equation*}
u(t, x)=e^{-t}\left[t^{x}-\Gamma(x+1)\right] \text { and } v(t)=\left(1+e^{-\frac{2}{3} t}\right)^{-2} \tag{2.7}
\end{equation*}
$$

The function $v(t)$ is strictly increasing for $t \in(0, \infty)$. Now, let $t_{0}=(\Gamma(x+1))^{\frac{1}{x}}$, then for $0<t<t_{0}, u(t, x)<0$ and $v(t)<v\left(t_{0}\right)$. Further, for $t>t_{0}$, then $u(t, x)>0$ and $v(t)>v\left(t_{0}\right)$. Hence we have that $u(t, x) v(t)>u(t, x) v\left(t_{0}\right)$ for $t>0, t \neq t_{0}$. This implies that

$$
\int_{0}^{\infty} u(t, x) v(t) d t>v\left(t_{0}\right) \int_{0}^{\infty}\left(e^{-t} t^{x}-e^{-t} \Gamma(x+1)\right) d t=0
$$

Hence

$$
\begin{equation*}
P(x)>\frac{3\left(\frac{\pi}{4}-\frac{1}{2}\right)}{3^{x+1}}, \quad x>0 . \tag{2.8}
\end{equation*}
$$

Now for the right inequality.
We have from (2.1)

$$
\begin{aligned}
\Gamma(x+1)\left[2-3^{x+1} P(x)\right] & =2\left[\Gamma(x+1)-3^{x+1} \int_{0}^{\infty} \frac{e^{-t} \cdot t^{x}}{\left(e^{t}+e^{-t}\right)^{2}} d t\right] \\
& =2\left\{\int_{0}^{\infty} e^{-t} t^{x} d t-3 \int_{0}^{\infty} \frac{e^{-3 t} \cdot(3 t)^{x}}{\left(1+e^{-2 t}\right)^{2}} d t\right\} \\
& =2 \int_{0}^{\infty} e^{-t} t^{x}[1-v(t)] d t
\end{aligned}
$$

where $v(t)$ is as given by (2.7). We note that $e^{-t} t^{x}$ is positive and $1-v(t)$ is strictly decreasing and positive so that

$$
\begin{equation*}
P(x)<\frac{2}{3^{x+1}}, \quad x>0 \tag{2.9}
\end{equation*}
$$

The results in (2.8) and (2.9) demonstrate lower and upper bounds respectively for $P(x)$. That the constants in (2.4) are best possible will now be shown. If (2.3) holds for all positive x then we have, on noting the identity (2.1),

$$
\begin{equation*}
c<3^{x+1} P(x)<d \tag{2.10}
\end{equation*}
$$

Now, from (2.1), we have

$$
\begin{equation*}
3^{x+1} P(x)=\frac{3^{x+1}}{\Gamma(x+1)} \cdot 2 \int_{0}^{\infty} \frac{e^{-t} \cdot t^{x}}{\left(e^{t}+e^{-t}\right)^{2}} d t \tag{2.11}
\end{equation*}
$$

and so

$$
\begin{equation*}
\lim _{x \rightarrow 0} 3^{x+1} P(x)=3 \cdot I=3\left(\frac{\pi}{4}-\frac{1}{2}\right) \tag{2.12}
\end{equation*}
$$

where we have undertaken the permissible interchange of limit and integration and, we have used (2.5) - (2.6).

Alternatively, from (2.11), we have

$$
\begin{equation*}
3^{x+1} P(x)=\frac{3^{x+1}}{\Gamma(x+1)} \cdot 2 \int_{0}^{\infty} \frac{e^{-3 t} \cdot t^{x}}{\left(1+e^{-2 t}\right)^{2}} d t \tag{2.13}
\end{equation*}
$$

Now, since for $0<w<1,1-2 w<(1+w)^{-2}<1$, we have

$$
1-2 e^{-2 t}<\frac{1}{\left(1+e^{-2 t}\right)^{2}}<1
$$

and so from (2.13)

$$
\begin{equation*}
2\left(1-\left(\frac{3}{5}\right)^{x+1}\right)<3^{x+1} P(x)<2 \tag{2.14}
\end{equation*}
$$

Thus, from (2.14), we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} 3^{x+1} P(x)=2 \tag{2.15}
\end{equation*}
$$

From (2.10), (2.12) and (2.15) we have $c \leq 3\left(\frac{\pi}{4}-\frac{1}{2}\right)$ and $d \geq 2$ which means that in (2.3) the best possible constants are given by $c=3\left(\frac{\pi}{4}-\frac{1}{2}\right)$ and $d=2$.

Corollary 1. The bound

$$
\begin{equation*}
\left|\beta(x+1)-\beta(x)-\frac{d+c}{2 \cdot 3^{x+1}}\right|<\frac{d-c}{2 \cdot 3^{x+1}} \tag{2.16}
\end{equation*}
$$

holds where $c=3\left(\frac{\pi}{4}-\frac{1}{2}\right)$ and $d=2$.
Proof. From (2.3), let

$$
\begin{equation*}
L(x)=\beta(x)+\frac{c}{3^{x+1}} \text { and } U(x)=\beta(x)+\frac{d}{3^{x+1}} \tag{2.17}
\end{equation*}
$$

then

$$
\begin{equation*}
L(x)<\beta(x+1)<U(x) \tag{2.18}
\end{equation*}
$$

and so

$$
-\frac{U(x)-L(x)}{2}<\beta(x+1)-\frac{U(x)+L(x)}{2}<\frac{U(x)-L(x)}{2} .
$$

Remark 1. The form (2.16) is useful since we may write

$$
\beta(x+1)=\beta(x)+\frac{d+c}{2 \cdot 3^{x+1}}+E(x),
$$

where $|E(x)|<\varepsilon$ for

$$
x>x^{*}:=\frac{\ln \left(\frac{d-c}{2 \cdot \varepsilon}\right)}{\ln (3)}-1 .
$$

Corollary 2. The Dirichlet beta function satisfies the bounds

$$
\begin{equation*}
L_{2}(x)<\beta(x+1)<U_{2}(x) \tag{2.19}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{2}(x)=\beta(x+2)-\frac{d}{3^{x+2}} \quad \text { and } \quad U_{2}(x)=\beta(x+2)-\frac{c}{3^{x+2}} . \tag{2.20}
\end{equation*}
$$

Proof. From (2.3)

$$
-\frac{d}{3^{x+1}}<\beta(x)-\beta(x+1)<-\frac{c}{3^{x+1}} .
$$

Replace x by $x+1$ and rearrange to produce (2.19) - (2.20).
Remark 2. Some experimentation with the Maple computer algebra package indicates that the lower bound $L_{2}(x)$ is better than $L(x)$ for $x>x_{*} \approx$ 0.65827 and vice versa for $x<x_{*}$. Similarly, $U(x)$ is better than $U_{2}(x)$ for $x>x^{*} \approx 3.45142$ and vice versa for $x<x^{*}$.

Corollary 3. The Dirichlet beta function satisfies the bounds

$$
\max \left\{L(x), L_{2}(x)\right\}<\beta(x+1)<\min \left\{U(x), U_{2}(x)\right\}
$$

where $L(x), U(x)$ are given by (2.17) and $L_{2}(x), U_{2}(x)$ by (2.20).
Remark 3. Table 1 provides lower and upper bounds for $\beta(2 n)$ for $n=$ $1, \ldots, 5$ utilising Theorem 2 and Corollary 2 with $x=2 n-1$. That is, the bounds are in terms of $\beta(2 n-1)$ and $\beta(2 n+1)$ where these may be obtained explicitly using the result (1.2). There is no known explicit expression for $\beta(2 n)$.

n	$L(2 n-1)$	$L_{2}(2 n-1)$	$\beta(2 n)$	$U(2 n-1)$	$U_{2}(2 n-1)$
1	.8805308843	.8948720722	.9159655942	1.007620386	.9372352393
2	.9795164487	.9879273754	.9889445517	.9936375043	.9926343940
3	.9973323061	.9986400132	.9986852222	.9989013123	.9991630153
4	.9996850054	.9998480737	.9998499902	.9998593395	.9999061850
5	.9999641840	.9999830849	.9999831640	.9999835544	.9999895417

Table 1: Table of $L(2 n-1), L_{2}(2 n-1), \beta(2 n), U(2 n-1)$ and $U_{2}(2 n-1)$ as given by (2.17) and (2.20) for $n=1, \ldots, 5$.

References

[1] H. ALZER, Remark on a double-inequality for the Euler zeta function, Expositiones Mathematicae, 23(4) (2005), 349-352.
[2] T. M. APOSTOL, Analytic Number Theory, Springer, New York, 1976.
[3] P. CERONE, M. A. CHAUDHRY, G. KORVIN and A. QADIR, New inequalities involving the zeta function, J. Inequal. Pure Appl. Math., 5(2) (2004), Art. 43. [ONLINE: http://jipam.vu.edu.au/article.php?sid=392]
[4] H. M. EDWARDS, Riemann's Zeta Function, Academic Press, New York, 1974.
[5] S. R. FINCH, Mathematical Constants, Cambridge Univ. Press, Cambridge, 2003.
[6] J. HAVIL, Gamma: Exploring Euler's constant, Princeton University Press, New Jersey, 2003.
[7] A. IVIĆ, The Riemann Zeta Function, Wiley, New York, 1985.
[8] E. C. TITCHMARSH, The Theory of the Riemann Zeta Function, Oxford Univ. Press, London, 1951.

[^0]: *2000 Mathematics Subject Classification. 26D99, 11M06, 26D07.
 ${ }^{\dagger}$ E-mail: pietro.cerone@.vu.edu.au
 ${ }^{\ddagger}$ http://www.staff.vu.edu.au/RGMIA/cerone/

