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Abstract

Let β (x) be the Dirichlet beta function. Then for all x > 0

c < 3x+1 [β (x+ 1)− β (x)] < d

with the best possible constant factors

c = 3
(
π

4
− 1

2

)
≈ 0.85619449 and d = 2.

The above result, and some variants, are used to approximate β at even
integers in terms of known β at odd integers.
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1. Introduction

The Dirichlet beta function or Dirichlet L−function is given by [5]

β (x) =
∞∑
n=0

(−1)n

(2n+ 1)x
, x > 0, (1.1)

where β (2) = G, Catalan’s constant.
The beta function may be evaluated explicitly at positive odd integer values

of x, namely,

β (2n+ 1) = (−1)n
E2n

2 (2n)!

(π
2

)2n+1

, (1.2)

where En are the Euler numbers.
The Dirichlet beta function may be analytically continued over the whole

complex plane by the functional equation

β (1− z) =

(
2

π

)z
sin
(πz

2

)
Γ (z) β (z) .

The function β (z) is defined everywhere in the complex plane and has no
singularities, unlike the Riemann zeta function, ζ (s) =

∑∞
n=1

1
ns
, which has a

simple pole at s = 1.
The Dirichlet beta function and the zeta function have important applica-

tions in a number of branches of mathematics, and in particular in Analytic
number theory. See for example [2], [4] – [7].

Further, β (x) has an alternative integral representation [5, p. 56]

β (x) =
1

Γ (x)

∫ ∞
0

tx−1

et + e−t
dt, x > 0, (1.3)

where

Γ (x) =

∫ ∞
0

e−ttx−1dt.

The function β (x) is also connected to prime number theory [5] which may
perhaps be best summarised by

β (x) =
∏

p prime,p≡1(mod4)

(
1− p−x

)−1 ·
∏

p prime,p≡3(mod4)

(
1 + p−x

)−1

=
∏

p odd,p prime

(
1− (−1)

p−1
2 p−x

)−1

,
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where the rearrangement of factors is permitted because of absolute conver-
gence.

It is the intention of the current article to present sharp bounds for the
secant slope of the β (x) over a distance of 1 apart. This will enable an approx-
imation of the beta function at even integers given that beta at odd integers
is as in (1.2). Cerone et al. [3] utlised a similar philosophy in investigating
the zeta function, however, one of the bounds was not sharp. Alzer [1] proved
a tighter lower bound and proved the sharpness of both the upper and lower
bounds.

2. An Identity and Bounds Involving the Beta

Function

The following lemma will play a significant role in obtaining bounds for the
Dirichlet beta function, β (x) .

Lemma 1. The following identity for the Dirichlet beta function holds. Namely,

P (x) :=
2

Γ (x+ 1)

∫ ∞
0

e−t

(et + e−t)2 · t
xdt = β (x+ 1)− β (x) . (2.1)

Proof. From (1.3)

xΓ (x) β (x) =

∫ ∞
0

xtx−1

et + e−t
dt, x > 0

which upon integration by parts gives

Γ (x+ 1) β (x) =

∫ ∞
0

tx · et − e−t

(et + e−t)2dt. (2.2)

Thus, from (1.3) and (2.2) upon simplification produces (2.1). 2

The following theorem produces sharp bounds for the secant slope of β (x) .

Theorem 1. For real numbers x > 0, we have

c

3x+1
< β (x+ 1)− β (x) <

d

3x+1
, (2.3)
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with the best possible constants

c = 3

(
π

4
− 1

2

)
= 0.85619449 . . . and d = 2. (2.4)

Proof. Let x > 0. We first establish the left inequality in (2.3). From (2.1)
we note that 0 < P (x) and consider

I = 2

∫ ∞
0

e−t

(et + e−t)2dt. (2.5)

That is, making the change of variable u = e−t gives

I = 2

∫ 1

0

u2

(1 + u2)2du

from which a further change of variable u = tan θ produces

I = 2

∫ π
4

0

sin2 θdθ =
π

4
− 1

2
. (2.6)

From (2.1) and (2.5) we have

Γ (x+ 1)
[
3x+1P (x)− 3 · I

]
=6

[
3x
∫ ∞

0

e−t · tx

(et + e−t)2dt− Γ (x+ 1)

∫ ∞
0

e−t

(et + e−t)2dt

]
=6

[∫ ∞
0

e−3t

(1 + e−2t)2 [(3t)x − Γ (x+ 1)] dt

]
=2

∫ ∞
0

e−t(
1 + e−

2
3
t
)2 [tx − Γ (x+ 1)] dt

=2

∫ ∞
0

u (t, x) v (t) dt,

where

u (t, x) = e−t [tx − Γ (x+ 1)] and v (t) =
(

1 + e−
2
3
t
)−2

. (2.7)
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The function v (t) is strictly increasing for t ∈ (0,∞) .Now, let t0 = (Γ (x+ 1))
1
x ,

then for 0 < t < t0, u (t, x) < 0 and v (t) < v (t0) . Further, for t > t0, then
u (t, x) > 0 and v (t) > v (t0) . Hence we have that u (t, x) v (t) > u (t, x) v (t0)
for t > 0, t 6= t0. This implies that∫ ∞

0

u (t, x) v (t) dt > v (t0)

∫ ∞
0

(
e−ttx − e−tΓ (x+ 1)

)
dt = 0.

Hence

P (x) >
3
(
π
4
− 1

2

)
3x+1

, x > 0. (2.8)

Now for the right inequality.
We have from (2.1)

Γ (x+ 1)
[
2− 3x+1P (x)

]
= 2

[
Γ (x+ 1)− 3x+1

∫ ∞
0

e−t · tx

(et + e−t)2dt

]
= 2

{∫ ∞
0

e−ttxdt− 3

∫ ∞
0

e−3t · (3t)x

(1 + e−2t)2dt

}
= 2

∫ ∞
0

e−ttx [1− v (t)] dt,

where v (t) is as given by (2.7). We note that e−ttx is positive and 1− v (t) is
strictly decreasing and positive so that

P (x) <
2

3x+1
, x > 0. (2.9)

The results in (2.8) and (2.9) demonstrate lower and upper bounds re-
spectively for P (x) . That the constants in (2.4) are best possible will now be
shown. If (2.3) holds for all positive x then we have, on noting the identity
(2.1),

c < 3x+1P (x) < d. (2.10)

Now, from (2.1), we have

3x+1P (x) =
3x+1

Γ (x+ 1)
· 2
∫ ∞

0

e−t · tx

(et + e−t)2dt (2.11)

and so

lim
x→0

3x+1P (x) = 3 · I = 3

(
π

4
− 1

2

)
, (2.12)
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where we have undertaken the permissible interchange of limit and integration
and, we have used (2.5) – (2.6).

Alternatively, from (2.11), we have

3x+1P (x) =
3x+1

Γ (x+ 1)
· 2
∫ ∞

0

e−3t · tx

(1 + e−2t)2dt. (2.13)

Now, since for 0 < w < 1, 1− 2w < (1 + w)−2 < 1, we have

1− 2e−2t <
1

(1 + e−2t)2 < 1

and so from (2.13)

2

(
1−

(
3

5

)x+1
)
< 3x+1P (x) < 2. (2.14)

Thus, from (2.14), we have

lim
x→∞

3x+1P (x) = 2. (2.15)

From (2.10), (2.12) and (2.15) we have c ≤ 3
(
π
4
− 1

2

)
and d ≥ 2 which means

that in (2.3) the best possible constants are given by c = 3
(
π
4
− 1

2

)
and d = 2.

2

Corollary 1. The bound∣∣∣∣β (x+ 1)− β (x)− d+ c

2 · 3x+1

∣∣∣∣ < d− c
2 · 3x+1

(2.16)

holds where c = 3
(
π
4
− 1

2

)
and d = 2.

Proof. From (2.3), let

L (x) = β (x) +
c

3x+1
and U (x) = β (x) +

d

3x+1
, (2.17)

then
L (x) < β (x+ 1) < U (x) (2.18)

and so

−U (x)− L (x)

2
< β (x+ 1)− U (x) + L (x)

2
<
U (x)− L (x)

2
.
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2

Remark 1. The form (2.16) is useful since we may write

β (x+ 1) = β (x) +
d+ c

2 · 3x+1
+ E (x) ,

where |E (x)| < ε for

x > x∗ :=
ln
(
d−c
2·ε

)
ln (3)

− 1.

Corollary 2. The Dirichlet beta function satisfies the bounds

L2 (x) < β (x+ 1) < U2 (x) , (2.19)

where

L2 (x) = β (x+ 2)− d

3x+2
and U2 (x) = β (x+ 2)− c

3x+2
. (2.20)

Proof. From (2.3)

− d

3x+1
< β (x)− β (x+ 1) < − c

3x+1
.

Replace x by x+ 1 and rearrange to produce (2.19) – (2.20). 2

Remark 2. Some experimentation with the Maple computer algebra pack-
age indicates that the lower bound L2 (x) is better than L (x) for x > x∗ ≈
0.65827 and vice versa for x < x∗. Similarly, U (x) is better than U2 (x) for
x > x∗ ≈ 3.45142 and vice versa for x < x∗.

Corollary 3. The Dirichlet beta function satisfies the bounds

max {L (x) , L2 (x)} < β (x+ 1) < min {U (x) , U2 (x)} ,

where L (x) , U (x) are given by (2.17) and L2 (x) , U2 (x) by (2.20).

Remark 3. Table 1 provides lower and upper bounds for β (2n) for n =
1, . . . , 5 utilising Theorem 2 and Corollary 2 with x = 2n − 1. That is, the
bounds are in terms of β (2n− 1) and β (2n+ 1) where these may be obtained
explicitly using the result (1.2). There is no known explicit expression for
β(2n).
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n L (2n− 1) L2 (2n− 1) β (2n) U (2n− 1) U2 (2n− 1)
1 .8805308843 .8948720722 .9159655942 1.007620386 .9372352393
2 .9795164487 .9879273754 .9889445517 .9936375043 .9926343940
3 .9973323061 .9986400132 .9986852222 .9989013123 .9991630153
4 .9996850054 .9998480737 .9998499902 .9998593395 .9999061850
5 .9999641840 .9999830849 .9999831640 .9999835544 .9999895417

Table 1: Table of L (2n− 1) , L2 (2n− 1) , β (2n) , U (2n− 1) and U2 (2n− 1)
as given by (2.17) and (2.20) for n = 1, . . . , 5.
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