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Abstract

In this paper, we present analytic solutions of two-dimensional Navier-
Stokes equations governing the unsteady incompressible flow The solu-
tions have been obtained using hodograph-Legendre transform method.
The obtained solutions are also compared with the existing results.

Keywords and Phrases: Unsteady flow, Hodograph method, Hodograph-
Legendre transform.

1. Introduction

A Newtonian fluid is defined as one which satisfies Newton’s law of viscosity.
The equations which deals with the flow of Newtonian fluids are Navier-Stokes
equations. There is no reason to believe that all fluids of low molecular weight
should satisfy these equations. The Navier-Stokes equations are highly non-
linear. The analytic solution of such equations have great value.

There are various methods and techniques which have been used to solve
the Navier-Stokes equations. Some of these are based on intuition. One tech-
nique, which has become one of the powerful analytical tools and which has
gained a considerable importance, is the method of transformations. In such
methods, where applicable, either the system is linearized, the non-linear par-
tial differential equations are reduced to a system of non-linear ordinary dif-
ferential equations which can be solved, or some other type of reduction is
performed to minimize the complexity. A comprehensive review of such trans-
formations is given in the monograph of Ames [1].Amongst many,the hodo-
graph transformation have gained a considerable success in various fields of
research such as gas dynamics [2,3], linear viscous fluids [4], non-Newtonian
fluids [5,6] and MHD Newtonian and non-Newtonian fluid flows [7,8]. The
objective of the present communication is to obtain the analytic solutions of
the Navier-Stokes equations. For this purpose, we consider two-dimensional
time dependent equations. These equations are first transformed in the hodo-
graph plane (U, V ) from the plane (X, Y ) and then solutions are constructed
by introducing the four Legengdre transform functions. It is noted that the
results of several previous studies appear as the limiting cases of the present
investigation.
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2. Governing Equations

For unsteady plane flow, the velocity field is defined as

V = [U (X, Y, t) , V (X, Y, t) , 0] , (1)

where U and V are the velocities in X and Y directions, respectively.
The continuity and momentum equations give

∂U

∂X
+
∂V

∂Y
= 0, (2)

ρ

(
∂

∂t
+ U

∂

∂X
+ V

∂

∂Y

)
U = − ∂P

∂X
+ µ

(
∂2

∂X2
+

∂2

∂Y 2

)
U, (3)

ρ

(
∂

∂t
+ U

∂

∂X
+ V

∂

∂Y

)
V = −∂P

∂Y
+ µ

(
∂2

∂X2
+

∂2

∂Y 2

)
V (4)

in which ρ is the constant density, µ is dynamic viscosity of the fluid, and P
is the scalar pressure. we see the above three partial differential differential
equations have three unknowns U, V and P as functions of three independent
variables X, Y,and t.

Using the transformation

x = X − ct, y = Y,
u = U − c, v = V,

(5)

in equations (2)− (4) and then introducing the vorticity

ω =
∂u

∂x
+
∂v

∂y
(6)

into the resulting equations we have

∂u

∂x
+
∂v

∂y
= 0 (7)

∂h

∂x
− ρvω = −µ∂ω

∂y
(8)

∂h

∂y
+ ρuω = µ

∂ω

∂x
(9)
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where c is a parameter and the modified pressure is

h = P +
1

2

(
u2 + v2

)
(10)

The equations (7) − (9) constitute a system of four partial differential
equations having four unknown functions u(x, y), w(x, y),and h(x, y).

Note that the transformation (5) and Eq. (6) have been used to reduced
the number of independent variables (from three to two) and to reduce the
order (from two to one), respectively.

3. Equations in hodograph plane

Let us consider

u = u(x, y), v = v(x, y) (11)

in such a way that their Jacobian

J =
∂ (u, v)

∂(x, y)
6= 0 (12)

is not zero and 0 < |J | < ∞.In such cases we may interchange the roles of
dependent and independent variables. Thus on writing

x = x(u, v), y = (u, v) (13)

the equations (6)− (9) in the hodograph plane (u, v) take the following form

∂x

∂u
+
∂y

∂v
= 0, (14)

j

(
∂x

∂v
− ∂y

∂u

)
= ω, (15)

−j ∂ (h, y)

∂(u, v)
= ρvω + µjW1, (16)

j
∂ (h, y)

∂(u, v)
= ρuω + µjW2. (17)

In above equations
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W1 = W1(u, v) =
∂ (x, ω)

∂ (u, v)
, W2 = W2(u, v) =

∂ (−y, ω)

∂ (u, v)
, J = J(u, v) =

[
∂ (x, y)

∂ (u, v)

]−1

.

(18)
Note that Eqs. (14)− (17) form a system of four partial differential equa-

tions in four unknown functions x, y, ω, h in the hodograph plane (u, v). now
if x = x(u, v), y = y(u, v), ω = ω(u, v), h = h(u, v) are known then one can
easily find out u = u(x, y), v = v(x, y), ω = ω(x, y), h = h(x, y), through
Eqs.(6)-(9). The expressions for U , V and P can be calculated through Eqs.(5)
and (10).

4. Equations for the Legendre-transform func-

tion

The Eq. (2) implies the existence of the following stream function Ψ(x, y, t)

U =
∂Ψ

∂Y
, V = − ∂Ψ

∂X
. (19)

Also Eq. (7) implies the existence of stream functions ψ(x, y) such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (20)

and the two steam functions are related through

Ψ = Ψ(X, Y, t) = ψ(X − ct)− CY + constt. (21)

In a similar fashion, the Eq. (14) implies the existence of a function L(u, v),
called the Legendre-transform function of the stream function ψ(x, y) such that

Lu =
∂L

∂u
= −y, Lv =

∂L

∂v
= x (22)

and the two functions ψ(x, y) and L(u, v) are related by

L(u, v) = vx− u, y + ψ(x, y). (23)

Introducing L(u, v) the system (14)−(18), we find that Eq. (14) is satisfied
identically and other equations after eliminating h(u, v) between them take the
form



262 Muhammad R. Mohyuddin, A. M. Siddiqui, T. Hayat, J. Siddiqui, and S. Asghar

µ

[
∂ (Lv,jw1)

∂ (u, v)
+
∂ (Lvv,jw2)

∂ (u, v)

]
= ρ (uW2 + vW1) , (24)

where

W1 =
∂ (Lvv,w)

∂ (u, v)
, W2 =

∂ (Luv,w)

∂ (u, v)
, ω = j (Luu+ Lvv) , j = (LuuLvv−L2uv)−1.

(25)
Given a solution L = L(u, v), of equation (24), we can the velocity com-

ponents as function of (x, y). Once a steady state solution is in hand, we can
then use Eq. (5) to obtain a time dependent solution.

5. Solutions

Here, we determine the solutions of the flow problems by selecting the specific
forms of the Legendre-transform function.

We seek a Legendre-transform function

L(u, v) = vF (u) +G(u) (26)

such that F (u) 6= 0. Using Eq. (26) in Eqs. (24) and (25), we find that

ν

 ν
(
F iv

F ′2
− 10F

′′′
F
′′

F ′3
+ 15F

′′3

F ′4

)
+
(
Giv

F ′2
− 6G

′′′
F
′′

F ′3
− 4G

′′
F
′′′

F ′3
+ 15G

′′
F
′′2

F ′4

)  = −νF
′′

F ′
+uv

 F
′′

F ′
− 3F

′′2

F ′2

+u
(
G
′′′

F ′
− 3G

′′
F
′′

F ′2

)  ,
(27)

where ν = µ/ρ is the kinematic viscosity. Equation (27) gives rise to the
following differential equations

ν
[
F ivF

′2 − 10F
′′′
F
′′
F
′
+ 15F

′′3
]

= u
(
F
′′′
F
′3 − 3F

′′2

F
′2
)
− F ′′F ′3 , (28)

ν
[
GivF

′2 − 6G
′′′
F
′′
F
′ − 4G

′′
F
′′′
F
′
+ 15G

′′
F
′′2
]

= u(G
′′′
F
′3 − 3G

′′
F
′′
F
′2

).

(29)
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It seems to be very difficult to obtain the general solution of these equa-
tions. We, therefore, examine some special cases.

On assuming
F (u) = Aum, m 6= 0 (30)

in equation (28), we find that

vu3m−6
[
(m− 2) (m− 3)− 10 (m− 1) (m− 2) + 15 (m− 1)2]

= mA [(m− 2)− 3 (m− 1)− 1]u4m−5 (31)

we see that Eq. (32) is satisfied if m = −1 and A = −6v, and thus Eq. (30)
becomes F(u)=-6vu−1.(0)Substitution of Eq. (32) into Eq. (29) yields

u4Giv + 6u3G
′′′

= 0 (33)

whose general solution is

G = C1 + C2u+ C3u
2 + C4u

−3, (34)

where Ci(i = 1...4) are arbitrary constants. Using Eqs. (32) and (34) in Eq.
(26) we obtain the Legendre-transformation function

L(u, v) = −6vu−1 + C1 + C2u+ C3u
2 + C4u

−3. (35)

Now using Eq. (35) in Eq. (22) and solving for u(x, y) and v(x, y), we get

u(x, y) = −6v/x, v(x, y) = −6vyx−2− 6vC2x
−2 + 72v2C3x

−3 +
C4

72v3
x2 (36)

and thus the stream function ψ(x, y) becomes

ψ(x, y = −6vyx−1 − 6vC2x
−2 + 36C3v

2x−2 +
Cu

216v3
x3 + a0, (37)

where a0 is an arbitrary constant. The time dependent stream function Ψ(X, Y, t)
turns out to be

Ψ(X, Y, t) = − 6v

(x− ct)
Y − 6vC2

(x− ct)
+

36v2C3

(x− ct)2 +
C4 (x− ct)3

216v3
−cY +a0. (38)
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Here we choose

F (u) =
1

a
ln
u− A
KA

, (39)

where a, K and A are constants. If we substitute Eq. (39) in Eq. (28) we find
that the later is satisfied provided A = va and Eq. (40) becomes

F (u) =
1

a
ln

(
u− va
Kva

)
. (40)

With the help of Eq. (29) and (40) we can write

Giv +
6va− u

av (u− va)
G
′′′

+
7va− 3u

va (u− va)2G
′′

= 0. (41)

The order of the Eq. (41) can be reduced from four to two by setting G// = H
and accordingly, we have

H// +
6va− u

av (u− va)
H/′′′ +

7va− 3u

va (u− va)2H = 0. (42)

Since this equation has a regular singular point at u = va, we may assume a
Frobenious type solution

H =∞n=0 Cn (u− va)n+r (43)

and thus the general solution of Eq. (43) is

H = C1H0 + C2H1φ, (44)

where

H1 =
1

(u− va)2

[
e

u−va
va

]n
, H0 = C0 (u− va)∞n=0

1

n!

(
u− va
va

)n
,

φ = ln

(
u− va
va

)
+∞n=1

(−1)n

n!n

(
u− va
va

)n
.

Accordingly we obtain the the Legendre transform function L(u, v) and then
steady state stream function are found to be
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ψ(x, y) = va(1 +Keax)y +K3e
an +Kz

2dα
αC

kβ

β2
dβ +Kz

1dα
αC

kβ

β2
dββ

C−k∞

θ
dθ,

(45)
where Z = Cax and K1, K2, K3, are constants. We consider special case
of the solution where K1 = K2 = K3 = 0, such that Eq. (45) becomes
ψ (x, y) = va(1 +Kean)y, which is Riabouchinksy’s solution [9]. This solution
was derived by choosing the steady state stream function of the form ψ (x, y) =
yF (x) +G(x). Finally, we write the time dependent stream function

Ψ(X, Y, t) = va
[
1 +Kea(X−ct))

]
Y +K3C

a(X−ct)CY

+Kz
2dα

αC
kβ

β2
dβ +Kz

1dα
αC

kβ

β2
dββ

C−kβ

θ
dθ. (46)

The solution was also obtained by Dryden, Munaghan and Bateman [10]
who searched the solutions for time dependent stream function of the form
Ψ(X, Y, t) = Y F (X, t) +G(X, t).

We now seek the solution for

L(u, v) = A−1F (u) +G(u−B)v, A 6= 0. (47)

On substituting Eq. (55) into Eq. (28) we find that vAF iv − UF /// = 0,
whose general solution leads to the following expression

F (u) = D1dudu exp

(
u2

2vA

)
du+D2

U2

2
+D3u+D4 (48)

and thus the Legengre-transform function and the steady state stream func-
tions turn out to be

L(u, v) = A−1(u−B)v + A−1F (u) (49)

ψ(x, y) = (Ax+B)y + Ĉ1dxdx exp

[
(Ax+B)2

2vA

]
dx+ Ĉ2 (Ax+B)2

+Ĉ3 (Ax+B) + Ĉ4 (50)

where Di(i = 1, 2, 3, 4), Ĉj(j = 1 − 4), and B are constants. The steady
state solution (50) is similar to that of Jeffrey’s solution [11] that searched



266 Muhammad R. Mohyuddin, A. M. Siddiqui, T. Hayat, J. Siddiqui, and S. Asghar

for solution that satisfies Ψxx + Ψyy = F (x). The only difference between this
solution and Jeffrey’s solution is that the kinematic viscosity ν is associated
with quadratic term in our case while in the case of Jeffrey, viscosity appears
with the term which is linear in y,and time time dependent stream function
Ψ(X, Y, t) is reduced to

Ψ(X, Y, t) = Ax+B)y + Ĉ1dxdx exp

[
(Ax+B)2

2vA

]
dx− CY + Ĉ2 (Ax+B)2

+Ĉ3 (Ax+B) + Ĉ4. (51)

In this case the Legendre-transform function is sought to be

L(u, v) = F (u)+G(v), F /(u) 6= 0, F /(u) 6= 0, F //(u) 6= 0, G/(u) 6= 0, G//(u) = 0.
(52)

Using Eq .(52) in Eq. (28) and solving the resulting equation, Chandna et al.
[4] showed that

ψ (x, y) = vK(y − x) + C̃1e
Kx + C̃2e

Ky, (53)

where K
i
, Ni, (i = 1− 4) are arbitrary constants and C̃1 = e−KNL

vK
4 , C̃2 = e−KN1

vK
4 .

The steady state solution is similar to that of Berker [12]. Berker obtained
this type of solution by assuming ψ (x, y) = F (x)+G(y). The time dependent
stream function , in this case becomes

Ψ(X, Y, t) = vKY + vK(X − ct) + C̃1e
K(X−ct) + C̃2e

KY − CY + D̃, (54)

where K, C and D̃ are constants.

6. Concluding remarks

Solutions for the Navier-Stokes equations are obtained by employing trans-
formation methods. First, the time dependent Navier-Stokes equations are
transformed into steady state form and then hodograph transformation is used
to interchange the dependent and independent variables. Then Navier-Stokes
equations are reduced in the form of the Legendre-transform function. Several
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illustrations are considered to point out the usefulness of the method. It is
found that, for a particular Legendre-transform, the Navier-Stokes equations
in the hodograph plane become relatively easy to solve.
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