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Abstract

On page 366 of his lost notebook [8], Ramanujan has recorded
cubic continued fraction and several theorems analogous to Rogers-
Ramanujan continued fractions. In this paper we establish several
interesting results of cubic continued fraction which are analogous to
Rogers-Ramanujan continued fractions.
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1. Introduction

In Chapter 16, of his second note book [1], [3, pp.257-262], Ramanujan develops
the theory of theta-function and his theta-function is defined by

f(a, b) =
∞∑

n=−∞

a
n(n+1)

2 b
n(n−1)

2 , |ab| < 1,

= (−a; ab)∞(−b; ab)∞(ab; ab)∞,
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where, (q; q)∞ =
∏∞

n=1(1− qn), |q| < 1.

Following Ramanujan, we define

ϕ(q) := f(q, q) =
∞∑

n=−∞

qn
2

= (−q; q2)2
∞(q2; q2)∞, (1.1)

ψ(q) := f(q, q3) =
∞∑

n=−∞

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

, (1.2)

f(−q) := f(−q,−q2) =
∞∑

n=−∞

(−1)nq
n(3n−1)

2 = (q; q)∞, (1.3)

χ(q) := (−q; q2)∞. (1.4)

Let

R(q) :=
q

1
5

1+

q

1+

q2

1 + · · ·
, |q| < 1, (1.5)

denote the Rogers-Ramanujan continued fraction. On page 365 of his lost
notebook [8], Ramanujan wrote five identities which shows the relation be-
tween R(q) and the five continued fractions R(−q), R(q2), R(q3), R(q4) and
R(q5).

On page 366 of his lost notebook [8], Ramanujan has recorded cubic con-
tinued fraction

V (q) :=
q

1
3

1+

q + q2

1+

q2 + q4

1 + · · ·
, |q| < 1, (1.6)

and claimed that there are many results of V (q) which are analogous to R(q).

In Section 2, we establish several modular equations of degrees 3 and 9. In
Section 3, we establish general formulas to find explicit evaluations of V (q) and
reciprocity theorems. In Section 4, we establish the relation between µ(q) and
the other four identities µ(−q), µ(q2) and µ(q3), where µ(q) := 2V (q)V (q2).
We also establish reciprocity theorems, integral representations and several
explicit evaluations of µ(q).
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2. Modular Equations of Degrees 3 and 9

Theorem 2.1. We have

f 6(−q)
f 6(−q3)

=
ψ2(q)

ψ2(q3)

ψ4(q)− 9qψ4(q3)

ψ4(q)− qψ4(q3)
, (2.1)

f 6(−q2)

qf 6(−q6)
=

ϕ2(−q)
ϕ2(−q3)

ϕ4(−q)− 9ϕ4(−q3)

ϕ4(−q)− ϕ4(−q3)
, (2.2)

f 12(−q)
qf 12(−q3)

=
ϕ8(−q)
ϕ8(−q3)

ϕ4(−q)− 9ϕ4(−q3)

ϕ4(−q)− ϕ4(−q3)
, (2.3)

f 12(−q2)

f 12(−q6)
=

ψ8(q)

ψ8(q3)

ψ4(q)− 9qψ4(q3)

ψ4(q)− qψ4(q3)
. (2.4)

Proof of (2.1). By using Theorem 9.9 and Theorem 9.10 of Chapter 33 of Ra-
manujan notebooks [5, p.148], in Theorem 10.5 of Chapter 33 of Ramanujan’s
notebooks [5, p.156], we find that

ϕ4(−q)
ϕ4(−q3)

=
ψ4(q)− 9qψ4(q3)

ψ4(q)− qψ4(q3)
. (2.5)

Using Entry 24(ii) of Chapter 16 of Ramanujan’s notebooks [3, p.39] in (2.5),
we obtain (2.1).

As the proofs of the identities (2.2)-(2.4) are similar to the proof of the identity
(2.1). So we omit the details.

Theorem 2.2. We have

f 3(−q)
f 3(−q9)

=
ψ(q)

ψ(q9)

(
ψ(q)− 3qψ(q9)

ψ(q)− qψ(q9)

)2

, (2.6)

f 3(−q2)

f 3(−q18)
=

ψ2(q)

ψ2(q9)

ψ(q)− 3qψ(q9)

ψ(q)− qψ(q9)
, (2.7)

f 3(−q)
qf 3(−q9)

=
ϕ2(−q)
ϕ2(−q9)

ϕ(−q)− 3ϕ(−q9)

ϕ(−q)− ϕ(−q9)
, (2.8)

f 3(−q2)

q2f 3(−q18)
=

ϕ(−q)
ϕ(−q9)

(
ϕ(−q)− 3ϕ(−q9)

ϕ(−q)− ϕ(−q9)

)2

. (2.9)
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Proofs of the identities (2.6)-(2.9) are similar to the proof of the identity (2.1).
So we omit the details.

Theorem 2.3 We have

ϕ(q)− ϕ(q3) = 2qχ(q)f(−q,−q11), (2.10)

ϕ(q) + ϕ(q3) = 2χ(q)f(−q5,−q7), (2.11)

ϕ2(q)− ϕ2(q3) = 4qχ2(q)ψ(q6)f(−q,−q5), (2.12)

ϕ2(q) + ϕ2(q3) = 2χ2(q)ϕ(−q3)f(q2, q4). (2.13)

Proof of (2.10). Using (1.1), we find that

ϕ(−q)− ϕ(−q3) =
(q; q)∞

(−q; q)∞

[
1− (−q; q)∞(q3; q3)∞

(q; q)∞(−q3; q3)∞

]
= (q; q2)∞[f(−q,−q2)− f(q, q2)]. (2.14)

Using Entry 30(iii) of Chapter 16 of Ramanujan’s notebooks [3, p.46] and then
changing q by −q, we obtain (2.10).
Proofs of the identities (2.11)-(2.13) are similar to the proof of the identity
(2.10). So we omit the details.

Corollary 2.1. We have
(i)

ϕ(q)

ϕ(q3)
=

1 + P

1− P
, where P := P (q) =

qf(−q,−q11)

f(−q5,−q7)
. (2.15)

For more details, one can see [6].
(ii) If V (q) is defined as in (1.6), then

ϕ2(q)

ϕ2(q3)
=

1 + µ

1− µ
, where µ := µ(q) = 2V (q)V (q2), (2.16)

(iii)
ψ2(q2)

qψ2(q6)
=

2− µ
µ

, (2.17)

(iv) If t = q
1
12 (−q3;q3)∞

(−q;q)∞ , then

µ(−q) =
1−
√
x

1 +
√
x
, where x =

4

√
1 + t12 +

√
t24 − 34t12 + 1

2
, (2.18)
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(v) If µ(q) < 1, then

f 6(−q2)

qf 6(−q6)
=

(1 + µ)(1− 2µ)(2− µ)

µ(1− µ)
, (2.19)

(vi)
ψ4(−q)
qψ4(−q3)

=
(2µ− 1)(µ− 2)

µ
. (2.20)

Proof of (i). Using (2.6) and (2.7), we find that

ϕ(q)− ϕ(q3)

ϕ(q) + ϕ(q3)
=
qf(−q,−q11)

f(−q5,−q7)
.

Hence, we complete the proof.
Proofs of (ii)-(vi) are similar to proof of (i). So we omit the details.

Theorem 2.4. If α = 1−i
√

3
2

and β = 1+i
√

3
2

, then

ϕ(−q) + i
√

3ϕ(−q3) =
(1 + i

√
3)χ(−q)f(−q4)∏

n≡0,2,3( mod , 4)(1− αqn)
∏

n≡0,1,2( mod , 4)(1− βqn)
,

(2.21)

ϕ(−q)− i
√

3ϕ(−q3) =
(1− i

√
3)χ(−q)f(−q4)∏

n≡0,1,2( mod , 4)(1− αqn)
∏

n≡0,2,3( mod , 4)(1− βqn)
,

(2.22)

ϕ2(−q) + 3ϕ2(−q3) = 4χ2(−q)f(−q4)
∏

n≡0( mod , 3)

(1 + qn)(1 + q2n). (2.23)

Proof of (2.21). Let ω = e
2πi
3 then putting ω = −α and ω2 = −β. Since

β − α = i
√

3. Using (1.1), we obtain

ϕ(−q) + i
√

3ϕ(−q3) =
(q; q)∞

(−q; q)∞

[
1 +

(β − α)(q3; q3)∞(−q; q)∞
(−q3; q3)∞(q; q)∞

]
=

(q; q)∞
(−q; q)∞

[
1 + ω(1− ω)

2∏
i=1

(ωiq; q)∞
(−ωiq; q)∞

]

= χ(−q)
[
f(ω, ω2q)− f(−ω,−ω2q)

(−ω; q)∞(−ω2q; q)∞

]
.

Using Entry 30(iii) of Chapter 16 of Ramanujan’s notebooks [3, p.46], we find
that

ϕ(−q) + i
√

3ϕ(−q3) =
2ωχ(−q)f(ωq, ω2q3)

(1 + ω)(−ωq; q)∞(−ω2q; q)∞
.
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On simplification of the above identity, we obtain (2.21).
Proofs of the identities (2.22) and (2.23) are similar to the proof of the identity
(2.21). So we omit the details.
Theorem 2.5. We have[

27 +
f 12(−q)
qf 12(−q3)

] 1
3

=
1

V
+ 4V 2, (2.24)[

27 +
f 12(−q2)

q2f 12(−q6)

] 1
3

=
1

V 2
− 2V, (2.25)

3 +
f 3(−q 1

3 )

q
1
3f 3(−q3)

=
1

V
+ 4V 2, (2.26)

3 +
f 3(−q 2

3 )

q
2
3f 3(−q6)

=
1

V 2
− 2V. (2.27)

Proof of (2.24). By Entry 1(i) of Chapter 20 of Ramanujan’s notebooks [3,
p.345], we have

1 +
1

V 3
=

ψ4(q)

qψ4(q3)
. (2.28)

Using (2.28) in (2.1), we find that

f 12(−q)
qf 12(−q3)

= (1 +
1

V 3
)(1− 8V 3)2. (2.29)

On simplification of the above identity (2.29), we obtain (2.24).
As the proofs of the identities (2.25)-(2.27) are similar to the proof of the
identity (2.24). So we omit the details.
Theorem 2.6. We have

ϕ(q
1
3 )

ϕ(q3)
= 1 + 3

√
4µ(q)

(1− µ(q))2
, (2.30)

ψ(q
2
3 )

q
2
3ψ(q6)

= 1 + 3

√
4(1− µ(q))

µ(q)
. (2.31)

Proof of (2.30). Using (2.16) in (24.29) of Chapter 18 of Ramanujan note-
books [3, p.218], we obtain (2.30).
Proof of (2.31). Using (2.17) in (24.28) of Chapter 18 of Ramanujan note-
books [3, p.218], we obtain (2.31).
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3. General Formulas For Explicit Evaluations

of V (q)

In this section, we prove some general formulas for explicit evaluations of V (q).
Theorem 3.1. We have
(i) For q = e−2n

√
n
3 ,

3(1 + A2
n)

1
3 =

1

V
+ 4V 2, where An :=

1

3
√

3

f 6(−q)
q

1
2f 6(−q3)

, (3.1)

where V := V (q) is defined as in (1.6),

(ii) For q = e−π
√

n
3 ,

3(1 +B2
n)

1
3 =

1

V 2
− 2V, where Bn :=

1

3
√

3

f 6(−q2)

qf 6(−q6)
, (3.2)

(iii) For q = e−π
√

n
3 ,

3(1− λ2
n)

1
3 =

1

V (−q)
+ 4V (−q)2, where λn :=

1

3
√

3

f 6(q)

q
1
2f 6(q3)

, (3.3)

(iv) For q = e−2π
√
n,

3(1 +
√

3D3
n) =

1

V
+ 4V 2 , where Dn :=

1√
3

f(−q 1
3 )

q
1
9f(−q3)

, (3.4)

(v) For q = e−π
√
n,

3(1 +
√

3C3
n) =

1

V 2
− 2V, where Cn :=

1√
3

f(−q2/3)

q2/9f(−q6)
, (3.5)

(vi) For q = e−π
√
n,

3(1−
√

3F 3
n) =

1

V (−q)
+ 4V 2(−q), where Fn :=

1√
3

f(q
1
3 )

q
1
9f(q3)

. (3.6)

Theorem(3.1) can be easily proved by using the results in Theorem(2.5).
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Corollary 3.1. We have

A1 = B1 = C1 = D1 = F1 = λ1 = 1, (3.7)

V (e
− π√

3 ) = 2−
4
3

[
3

√
3 + 2

√
2 +

3

√
3− 2

√
2− 1

]
. (3.8)

Proof of (3.7). It follows from the definitions and transformation formulas
in Entry 27 (iii), (iv) of Chapter 16 of Ramanujan’s notebooks [3, p.43].
Proof of (3.8). Putting n=1 in (3.2), we find that

B1 = 1. (3.9)

Using (3.9) in (3.2), we deduce that

3
3
√

2 =
1

x2
− 2x, where x := V (e

π√
3 ). (3.10)

Solving the above equation, we obtain the required result.

Theorem 3.2. If V = V (q) is defined as in (1.6), then

V (−e−π
√

n
3 ) = −1

2

[
3
√
λn + 1− 3

√
λn − 1

]
, λn ≥ 1, (3.11)

where λn is defined as in (3.2).
Proof. The equation (3.3) can be written as

4V 3(−q)− 3(1− λ2
n)

1
3V (−q) + 1 = 0.

Solving the above equation, we obtain the required result.

Corollary 3.2. We have

V (−e
−π√

3 ) =
−1
3
√

4
. (3.12)

Proof. Putting n=1 in (3.3), we find that

λ1 = 1.

Using λ1 = 1 in (3.11), we obtain (3.12).

Theorem 3.3. If V (q) is defined as in (1.6), then

V (−e−π
√
n) =

−1

2

[
3
√
a+ 1− 3

√
a− 1

]
,
√

3F 3
n − 1 ≥ 0, (3.13)
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where

a =

√
3
√

3F 3
n − 9F 6

n + 3
√

3F 9
n

and Fn is defined as in (3.6).
Proof. The equation (3.6) can be written as

4V 3(−q) + 3(
√

3F 3
n − 1)V (−q) + 1 = 0,

√
3F 3

n − 1 ≥ 0.

Putting x = −4V (−q) in the above equation, we find that

x3 + 12(
√

3F 3
n − 1)x− 16 = 0,

√
3F 3

n − 1 ≥ 0.

Solving the above equation we obtain the required result.

Corollary 3.3. We have

V (−e−π) =
−1

2

[
3

√√
6
√

3− 9 + 1−
3

√√
6
√

3− 9− 1

]
.

Proof. Putting n = 1 in (3.6), we find that

F1 = 1.

Using F1 = 1 in (3.13), we obtain the required result.
Remark. One can evaluate V (q) by finding the explicit evaluations of λn and
Fn, using Ramanujan’s modular equations [4, pp.204-236] and transformation
formulas [3, p.43].

4. Relation Between Parameter µ(q) and µ(qn)

Theorem 4.1. If u := µ(q) , v := µ(−q) , w := µ(−q2) , x := µ(q2) ,
y := µ(q3) and z := µ(q5), then

v2 + (u+
1

u
− 5)v + 1 = 0, (4.1)

(1− u+ u2)w2 + (4− u− 2u2)w + u2 = 0, (4.2)

u2 + 2ux− 2x− 2ux2 + 2x2 = 0, (4.3)

u3 +3u2y−9u2y2−4u3y+4u3y2−4y+6uy+4y2−3uy2 +u2y3−y3 = 0. (4.4)
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Proof of (4.1). Using (2.20) and (2.16) in (2.5), we find that(
1 + µ(−q)
1− µ(−q)

)2

=
(2µ(q)− 1)(µ(q)− 2)− 9µ(q)

(2µ(q)− 1)(µ(q)− 2)− µ(q)
. (4.5)

On simplification of the above identity, we obtain (4.1).
Proof of (4.2). Using (2.16) and (2.17) in (2.5), we deduce that(

1 + µ(−q2)

1− µ(−q2)

)2

=
9µ2(q)− (2− µ(q))2

µ2(q)− (2− µ(q))2
. (4.6)

On simplification of the above identity, we obtain (4.2).
Proof of (4.3). Using (2.1), (2.4) and (2.16), we find that

x2(2− u)4(1− x)2(1− u− 2u2) = u4(1− u)(2− x)2(1− x− 2x2).

We find that

−2(ux2 − 2x+ 2 + 2ux− 2u)(u2x2 + 2x− 2ux− 2u2x+ u2)

(2x2 − 2ux2 − 2x+ 2ux+ u2) = 0.

The first two factors does not vanish in the neighbourhood of q = e−π. But
the third factor vanish in the neighbourhood of q = e−π. So by the identity
theorem it vanish identically. Hence, we complete the proof.
Proof of (4.4). Using (2.16) in Entry 1(ii) of Chapter 20 of Ramanujan’s
notebooks [3, p.345], we find that(

u3(2− y)3 + 6u2y(1− u)(1− y)
)2

+ 3uy2(2− u)2(2− y)

= y(1− u)3(1− y)2 + 9u2y3(1− u).

On simplification of the above identity, we obtain (4.4).
Theorem 4.2. If 3αβ = 1, then

µ(e−πβ) =
1− 2µ(e−πα)

2− µ(e−πα)
. (4.7)

where µ(q) is defined as in (2.16).
Proof. Putting q = e−πα in (2.16), we find that

ϕ2(e−πα)

ϕ2(e−3πα)
=

1 + µ(e−πα)

1− µ(e−πα)
. (4.8)
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Replacing α by β in the above identity (4.8), we obtain

ϕ2(e−πβ)

ϕ2(e−3πβ)
=

1 + µ(e−πβ)

1− µ(e−πβ)
. (4.9)

Using Entry 27(i) of Chapter 16 of Ramanujan’s notebooks [3, p.43], (4.8) and
(4.9), we find that

(1 + µ(e−πα))(1 + µ(e−πβ))

(1− µ(e−πα))(1− µ(e−πβ))
= 3.

After some simplification, we obtain the required result.
Theorem 4.3. We have

µ(q) =
−1 + exp(4

∫ q
0
ψ2(−t)ψ2(−t3)dt)

1 + exp(4
∫ q

0
ψ2(−t)ψ2(−t3)dt)

(4.10)

=
−1 + 3 exp(−4

∫ exp
(
π2

log q

)
0 ψ2(−t)ψ2(−t3)dt)

1 + 3 exp(−4
∫ exp

(
π2

log q

)
0 ψ2(−t)ψ2(−t3)dt)

(4.11)

=
2

1 + 9 exp(4
∫ 1

q
ϕ2(−t)ϕ2(−t3)dt

t
)

(4.12)

Proof of (4.10). Putting x = y = 2, m = 1, k = 3 in [2, Theorem 2.5(a)],
we obtain

ϕ2(q)

ϕ2(q3)
= exp

(
4

∫ q

0

ψ2(−t)ψ2(−t3)dt
)
. (4.13)

Using (2.18) and (4.13), we obtain (4.10).
Proof of (4.11). In Entry 27(i) of Chapter 16 of Ramanujan’s notebooks [3,

p.43], let α2 = log
(

1
q

)
and β2 = log

(
1
Q3

)
, then

log
1
4

(
1

q

)
ϕ(q) = log

1
4

(
1

Q3

)
ϕ(Q3), (4.14)

where

3 log

(
1

q

)
log

(
1

Q

)
= π2.
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Replacing q and Q by q3 and Q
1
3 respectively, we obtain

log
1
4

(
1

q3

)
ϕ(q3) = log

1
4

(
1

Q

)
ϕ(Q). (4.15)

Using (4.14) and (4.15), we find that

ϕ(q)

ϕ(q3)
=
√

3
ϕ(Q3)

ϕ(Q)
. (4.16)

Using (4.13), (4.16) and (2.16), we obtain (4.11).
Proof of (4.12). Putting x = y = m = 2 and k = 6 in [2, Theorem 2.5(c)],
we obtain

ψ2(q2)

qψ2(q6)
= 9 exp

(
4

∫ 1

q

ϕ2(−t)ϕ2(−t3)dt
t

)
. (4.17)

Using (4.17) and (2.17), we obtain (4.12).
Theorem 4.4. We have

µ(e−π) =

√
6
√

3− 9− 1√
6
√

3− 9 + 1
, (4.18)

µ(e−
√

3π) =
3
√

3
√

2− 1−
√

3
√

2 + 1

3
√

3
√

2− 1 +
√

3
√

2 + 1
, (4.19)

µ(e−
√

5π) =
3−

√
1 + 2

√
3 + 2

√
5

3 +
√

1 + 2
√

3 + 2
√

5
, (4.20)

µ(e−
√

7π) =
12
√

2−
√

32 +
√

5 +
√

21(
√

5 +
√

21 +
√√

21− 3)3

12
√

2 +

√
32 +

√
5 +
√

21(
√

5 +
√

21 +
√√

21− 3)3

,(4.21)

µ(e−3π) = (4.22)

3

√
3

√
2(
√

3− 1)− 1−
√

3

√
2(
√

3− 1)− 1 + 2(3
√

3− 5)( 3

√
2(
√

3 + 1) + 1)

3

√
3

√
2(
√

3− 1)− 1 +

√
3

√
2(
√

3− 1)− 1 + 2(3
√

3− 5)( 3

√
2(
√

3 + 1) + 1)

,

µ(e−
√

13π) = (4.23)
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3
√

2
√

2−
√

2
√

2 +
√

(2
√

3 +
√

13)(5
√

13− 18)( 4
√

3 +
√

4 +
√

3)3

3
√

2
√

2 +

√
2
√

2 +
√

(2
√

3 +
√

13)(5
√

13− 18)( 4
√

3 +
√

4 +
√

3)3

,

µ(e
− π√

2 ) =
2

3
√

3 + 3
√

2 + 1
, (4.24)

µ(e
− π√

3 ) = 2−
√

3, (4.25)

µ(e
− π√

6 ) =
2√

6 +
√

3 + 1
, (4.26)

µ(e−
π
3 ) =

4
√

3−
√

2−
√

3
4
√

3 +
√

2−
√

3
, (4.27)

µ(e−π
√

5
3 ) =

√
6−

√
3 +
√

5
√

6 +
√

3 +
√

5
, (4.28)

µ(e−π
√

7
3 ) =

3−
√

1 + 2(2
√

7 + 3
√

3)(3−
√

7)

3 +
√

1 + 2(2
√

7 + 3
√

3)(3−
√

7)
, (4.29)

µ(e−π
√

11
3 ) =

√
15 + 9

√
3−

√
15 + 4

√
11 +

√
3√

15 + 9
√

3 +
√

15 + 4
√

11 +
√

3
, (4.30)

µ(e−π
√

19
3 ) =

3−
√

1 + 2(2 +
√

3)3(3
√

19− 13)

3 +
√

1 + 2(2 +
√

3)3(3
√

19− 13)
. (4.31)

Proof of (4.18). From [5, p.330] we have

ϕ2(e−π)

ϕ2(e−3π)
=

√
6
√

3− 9. (4.32)

Using (4.32) in (2.16) and simplifying the resultant equation, we obtain the
required result.
The identities (4.19)-(4.31) can be obtained by using Ramanujan’s Class-
Invariants[5, pp.189-199] and equation (4.5) of [5, eqn.(4.5), p.330] in (2.16)
and (2.17). So we omit the details.
Remark. We can also obtain several other evaluations of µ(q), using (2.16),
(2.17), (2.30) and (2.31) and Ramanujan’s class invariants.
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