Completely 2-primal Ideals in Near-rings*

P. Dheena ${ }^{\dagger}$ and G. SatheeshKumar ${ }^{\ddagger}$
Professor of Mathematics, Department of Mathematics, Annamalai University, Annamalainagar - 608 002, India.

Received February 5, 2007, Accepted May 7, 2007.

Abstract

We introduce the notion of completely 2-primal ideals in near-rings. We have also introduced strongly completely 2 -primal near-rings. An ideal I of a near-ring N is said to be completely 2-primal if the prime radical of $I, P(I)$ is completely prime. We have obtained equivalent conditions for an ideal I to be completely 2 -primal.

Keywords and Phrases: 2-primal, Completely 2-primal, Strongly completely 2-primal, Prime radical.

1. Introduction

Throughout this paper N denotes a zero-symmetric near-ring with identity. An ideal P of N is called prime if for any two ideals A and B of $N, A B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. An ideal P of N is called completely prime if $a b \in P$ implies $a \in P$ or $b \in P$, for any $a, b \in N$. An ideal P of N is called completely semiprime if $a^{2} \in P$ implies $a \in P$, for any $a \in N$. Given a near-ring N, the intersection of all prime ideals called the prime radical of N is denoted by $P(N)$ and the set of all nilpotent elements is denoted by $N(N) . P(I)$ denotes the prime radical of I which is the intersection of all prime ideals containing I and $P_{c}(I)$ denotes the completely prime radical of I which is the intersection

[^0]of all completely prime ideals containing I. An ideal I of a near-ring N is called 2-primal if $P(N / I)=N(N / I) . N$ is called 2-primal if the zero ideal of N is 2-primal (Equivalently $P(N)=N(N)$).

An ideal I of N is said to have the insertion of factors property (IFP) if $x y \in I$ implies $x N y \subseteq I$ for $x, y \in N$. An ideal I of N has the strict IFP if $x y \in I$ implies $<x>N<y>\subseteq I$ for $x, y \in N$. In a ring IFP implies strict IFP but in a near-ring IFP does not imply strict IFP. An ideal I of N is called right (left) symmetric if $x y z \in I$ implies $x z y \in I(y x z \in I)$. An ideal I of N is said to be semi symmetric if for any $x \in N, x^{n} \in I$ for some positive integer n implies $<x>^{n} \subseteq I$. For an ideal I of $N, \sqrt{I}=\left\{x \in N \mid x^{n} \in I\right.$ for some positive integer $n\}$. If A and B are ideals of N then $(A: B)=\{x \in N \mid x B \subseteq A\}$ is an ideal of N. A near-ring N is called regular if for every $a \in N$, there exists an $x \in N$ such that $a=a x a$. A near-ring N is called a domain if every nonzero element is not a zero divisor.

An ideal I of a near-ring N is called completely 2-primal if $P(I)$ is completely prime. A near-ring N is called completely 2 -primal if the zero ideal is completely 2-primal i.e, $P(N)$ is completely prime. It is obvious that domains are completely 2 -primal and completely 2 -primal near-rings are 2 -primal. We use $P_{c}(N)$ for the intersection of all completely prime ideals of a near-ring N, and define $C(P(I))=\{n \in N \mid n+P(I)$ is not a zero divisor $N / P(I)\}$. Birkenmeier-Heatherly-Lee [2] have proved that an ideal I of a near-ring N is 2-primal if and only if $P(I)$ is completely semiprime.

If I is an ideal of a near-ring N and P is a prime ideal of N containing I, then
$N_{I}(P)=\{a \in N \mid a N\subseteq P(I)$ for some $b \in N \backslash P\} ;$
$N_{I P}=\{a \in N \mid a b \in P(I)$ for some $b \in N \backslash P\}$;
$\bar{N}_{I P}=\left\{a \in N \mid a^{m} \in N_{P}\right.$ for some positive integer $\left.m\right\}$.
If the context is clear we write $N(P)\left(N_{P}, \bar{N}_{P}\right)$ instead of $N_{I}(P)\left(N_{I P}, \bar{N}_{I P}\right)$
If $I=0$, we have defined $N(P)$ as $N_{I}(P)=\{a \in N \mid a N\subseteq P(N)$ for some $b \in N \backslash P\}$. For rings Kwang-Ho kang, Byung-Ok Kim, Sang-Jig Nam, and Su-Ho Sohn [4] defined $N(P)=\{a \in R \mid a R b \subseteq P(R)$ for some $b \in R \backslash P\}$. These two definitions coincide in rings. If R is a ring and if $a R b \subseteq P(R)$ then we have $b \in(P(R): a R)_{r}=\{x \in R \mid a R x \subseteq P(R)\}$. Since R is a ring, $(P(R): a R)_{r}$ is an ideal. Hence $\subseteq(P(R): a R)_{r}$. Thus $a R\subseteq P(R)$.

Kwang-Ho kang, Byung-Ok Kim, Sang-Jig Nam, and Su-Ho Sohn [4] have obtained equivalent conditions for a ring to be completely 2-primal. We have extended these results to near-rings. We have also obtained more equivalent
conditions for a near-ring to be completely 2-primal. For basic notations and terminology we refer to Pilz [6].

Lemma 1. Let I be an ideal of N. Then the following are equivalent:
(1) I is 2-primal.
(2) $P(I)=\sqrt{I}$

Proof. $(1) \Rightarrow(2)$ Clearly $P(I) \subseteq \sqrt{I}$. Let $x \in \sqrt{I}$. Then $x^{n} \in I$ for some positive integer n. Now $x^{n}+I=I$ implies $x+I \in N(R / I)=P(R / I)$ as I is 2-primal. Let P be an arbitrary prime ideal in N containing I. Then $x+I \in P+I$ as $P+I$ is a prime ideal in R / I. Hence $x \in P$ and thus $x \in P(I)$.
$(2) \Rightarrow(1)$ Clearly $P(N / I) \subseteq N(N / I)$. Let $x+I \in N(N / I)$. Then there exists a positive integer n such that $x^{n} \in I$. Hence $x \in \sqrt{I}$. Thus $x+I \in P(N / I)$.

Lemma 2. If I is an ideal of a near-ring N and P is a prime ideal of N containing I then $N(P) \subseteq P, N(N) \subseteq \bar{N}_{P}$ and $N(P) \subseteq N_{P} \subseteq \bar{N}_{P}$.

Proof. Let $x \in N(P)$. Then $x N\subseteq P(I)$ for some $b \in N \backslash P$. Since N has identity, $x\subseteq P(I) \subseteq P$ for some $b \in N \backslash P$. Hence $x \in(P:)$. Since $(P:)$ is an ideal, $<x>\subseteq(P:)$. Thus $<x>\subseteq P$. Since P is prime, we have $<x>\subseteq P$. Thus $x \in P$.

Let $x \in N(N)$. Then $x^{n}=0$ for some positive integer n. Hence $x^{n} b=0$ for every $b \in N \backslash P$. Hence $x \in \bar{N}_{P}$.
Let $x \in N(P)$. Then $x N\subseteq P(I)$ for some $b \in N \backslash P$. Therefore $x\subseteq$ $P(I)$ and hence $x b \in P(I)$. Thus $x \in N_{P}$. And $x \in N_{P}$ implies $x \in \bar{N}_{P}$.

Lemma 3. For any ideal I of N, if $a b \in I$ implies $b a \in I$ for any $a, b \in N$, then $(I: S)$ is an ideal for any subset S of N.

Theorem 4. If I is a 2-primal ideal and P is a prime ideal of N then $N(P)=$ $\cap\{Q$-prime ideal of N containing $I: Q \subseteq P\}$.

Proof. Let Q be a prime ideal of N containing I such that $Q \subseteq P$. Then $N(P) \subseteq N(Q) \subseteq Q$. So we have $N(P) \subseteq \cap\{Q$-prime ideal of N containing $I: Q \subseteq P\}$. Suppose $a \notin N(P)$. We shall find a prime ideal Q of N containing I such that $a \notin Q$ and $Q \subseteq P$. If $S=\left\{a, a^{2}, a^{3}, \ldots\right\}$ then S is a multiplicative system that does not contain 0 . Clearly $L=N \backslash P$ is an m-system. Let T be the set of all non-zero elements of N of the form $a^{t_{0}} x_{1} a^{t_{1}} x_{2} a^{t_{2}} \ldots x_{n} a^{t_{n}}$, where $x_{i} \in L$ and $t_{i} \in\{0\} \cup Z^{+}$, where Z^{+}is the
set of all positive integers. Let $M=S \cup T$. Note that $L \subseteq T$. We claim that M is an m-system. If $x, y \in S$ then xay $\in S$. Let $x \in S, y \in T$ with $x=a^{s}, y=a^{t_{0}} x_{1} a^{t_{1}} x_{2} a^{t_{2}} \ldots x_{n} a^{t_{n}}$. If $x a y \neq 0$ then $x a y \in T$. Suppose xay $=0$. Since $x_{1}, x_{2} \in L$ then there exists $x_{1}^{\prime} \in<x_{1}>$ and there exists $x_{2}^{\prime} \in<x_{2}>$ such that $x_{1}^{\prime} x_{2}^{\prime} \in L$. Since $x_{1}^{\prime} x_{2}^{\prime}, x_{3} \in L$ there exists $x_{12}^{\prime} \in<$ $x_{1}^{\prime} x_{2}^{\prime}>\subseteq \ll x_{1}><x_{2} \gg$ and there exists $x_{3}^{\prime} \in<x_{3}>$ such that $x_{12}^{\prime} x_{3}^{\prime} \in L$. Continuing this process we arrive at $x_{123 \ldots n-2}^{\prime} x_{n-1}^{\prime}, x_{n} \in L$. Now there exists $x_{123 \ldots n-1}^{\prime} \in<x_{123 \ldots n-2}^{\prime} x_{n-1}^{\prime}>\subseteq<\ldots \lll x_{1}><x_{2}><x_{3} \gg \ldots<$ $x_{n-1} \gg$ and there exists $x_{n}^{\prime} \in<x_{n}>$ such that $w=x_{123 \ldots n-1}^{\prime} x_{n}^{\prime} \in L$. Since $x a y=0$, xay $\in P(I)$. This implies $a^{s} a a^{t_{0}} x_{1} a^{t_{1}} x_{2} a^{t_{2}} \ldots x_{n} a^{t_{n}} \in P(I)$. Since I is 2-primal, $P(I)$ is completely semiprime and hence $x_{1} x_{2} \ldots x_{n} a^{1+s+t_{0}+\ldots+t_{n}} \in$ $P(I)$. Choose $m=1+s+t_{0}+\ldots+t_{n}$. Then $x_{1} x_{2} \ldots x_{n} a^{m} \in P(I)$. By Lemma $3,<x_{1}><x_{2}>\ldots<x_{n}><a^{m}>\subseteq P(I)$. Again $\ll x_{1}><x_{2} \gg<x_{3}>$ $\ldots<x_{n}><a^{m}>\subseteq P(I)$. Again applying Lemma 3, $\lll x_{1}><x_{2} \gg<$ $x_{3} \gg<x_{4}>\ldots<x_{n}><a^{m}>\subseteq P(I)$. Continuing this process we arrive at $<\ldots \lll x_{1}><x_{2} \gg<x_{3} \gg \ldots<x_{n_{1}} \gg<x_{n}><a^{m}>\subseteq P(I)$ and so $x_{123 \ldots n-1} x_{n}^{\prime} a^{m} \in P(I)$. Hence $w a^{m} \in P(I)$. Since $P(I)$ is completely semiprime, we have $(a w)^{m} \in P(I)$ and hence $a w \in P(I)$. Therefore $a \in N_{P}=N(P)$, a contradiction. Similarly if $x, y \in T$ then $x a y \neq 0$ and $x a y \in T$. This shows that M is an m -system that is disjoint from (0). Hence there is a prime ideal Q that is disjoint from M. Then $a \notin Q$ and $Q \subseteq P$, completing the proof.

Theorem 5. I is 2-primal if and only if every minimal prime ideal of N containing I is completely prime.

Proof. Assume that I is 2-primal. Let P be a minimal prime ideal of N containing I and let M be the multiplicative subsemigroup of N generated by $N \backslash P$. We claim that $P(I) \cap M=\phi$. If not choose an element $y \in P(I) \cap M$. Since $y \in M$, there exists $x_{1}, x_{2}, \ldots, x_{n} \in N \backslash P$ such that $y=x_{1} x_{2} \ldots x_{n} \in$ $P(I)$. Since I is 2-primal, $<x_{1}><x_{2}>\ldots<x_{n}>\subseteq P(I) \subseteq P$. Thus $<x_{i}>\subseteq P$ for some i.

Hence $x_{i} \in P$ for some i which contradicts our assumption. Let $K=\{J \mid J$ is an ideal of N containing I and $J \cap M=\phi\}$. K is not empty as $P(I) \in K$. By Zorn's lemma K contains a maximal element say Q. Hence $Q \subseteq N \backslash M$. Now we show that Q is prime. Otherwise there exists ideals A and B such that $A B \subseteq Q, A \nsubseteq Q, B \nsubseteq Q$. Choose $y \in A \backslash Q$ and $z \in B \backslash Q$. By the maximality of Q, we have $(Q+<y>) \cap M \neq \phi$ and $(Q+<z>) \cap M \neq \phi$. Let $a \in(Q+<y>) \cap M$ and $b \in(Q+<z>) \cap M$. Then $a b \in M$. Let
$a=p+r$ and $b=q+s$ for some $p, q \in Q$ and $r \in\langle y>$ and $s \in<z\rangle$. Then $a b=(p+r)(q+s)=p(q+s)+r(q+s)-r s+r s \in Q$, for $r s \in<y><z>\subseteq$ $A B \subseteq Q$. Thus $a b \in Q \cap M$, a contradiction. Hence Q is a prime ideal. Now $P(I) \subseteq Q \subseteq N \backslash M \subseteq P$. By the minimality of P we have $Q=N \backslash M=P$. Since M is a multiplicative semigroup, P is a completely prime ideal.

Conversely assume that every minimal prime ideal of N containing I is completely prime. Clearly $P(N / I) \subseteq N(N / I)$. Let $x+I \in N(N / I)$. Then $x^{n} \in I$ for some positive integer n. Let $P+I$ be a minimal prime ideal in N / I. Then P is a minimal prime ideal of N containing I and hence $x \in P$. Thus $x+I \in P_{m}(N / I)$ which is the intersection of all minimal prime ideals in N / I. Since the intersection of all minimal prime ideals in N / I coincides with the intersection of all prime ideals in $N / I, x+I \in P(N / I)$. Hence I is 2-primal.

Theorem 6. Given an ideal I of a near-ring N the following conditions are equivalent:

1. I is completely 2-primal;
2. I is 2-primal and $P_{c}(I)$ is completely prime;
3. Every minimal prime ideal of N containing I and $P_{c}(I)$ are both completely prime;
4. $C(P(I))=N \backslash P(I)$;
5. $N(P)=N_{P}=\bar{N}_{P}=P(I)$ for any minimal prime ideal P of N containing I;
6. $N(P)=N_{P}=\bar{N}_{P}=P(I)$ for any minimal completely prime ideal P of N containing I.

Proof. (1) $\Rightarrow(2)$ Clearly, I is 2-primal. Therefore $P(I)=P_{c}(I)$. Since I is completely 2-primal, $P(I)$ is completely prime and hence $P_{c}(I)$ is completely prime.
$(2) \Rightarrow(1)$ Since I is 2-primal, $P(I)$ is completely prime. Therefore I is completely 2-primal.
$(2) \Rightarrow(3)$ Since I is 2-primal by Theorem 5 , every minimal prime ideal of N containing I is completely prime.
$(3) \Rightarrow(2)$ Again using Theorem 5, we have I is 2-primal.
$(1) \Leftrightarrow(4)$ is a restatement of the definition.
(1) \Rightarrow (5) Let P be a minimal prime ideal of N containing I. Clearly $N(P) \subseteq N_{P} \subseteq \bar{N}_{P}$. Let $a \in \bar{N}_{P}$. Then $a^{n} b \in P(I)$ for some $b \in N \backslash P$ and for a positive integer n. Since $P(I)$ is completely prime $a \in P(I)$. Thus $a \in N(P)$. Hence $N(P)=N_{P}=\bar{N}_{P}$. By Theorem 4, $N(P)=P$. Since $P(I)$ is completely prime, $P(I)$ is the unique minimal prime ideal of N containing I and thus $N(P)=N_{P}=\bar{N}_{P}=P(I)$.
(5) \Rightarrow (6) Let $a+I \in N(N / I)$. Then $a^{n} \in I$, for some positive integer n. Thus $a \in \bar{N}_{P}=N_{P}=N(P)=P(I)$ for any minimal prime ideal P of N containing I. Hence I is 2-primal. So every minimal prime ideal of N containing I is completely prime by Theorem 5 . Thus every minimal completely prime ideal of N containing I is a minimal prime ideal of N containing I.
$(6) \Rightarrow(1)$ Let P be a minimal completely prime ideal of N containing I. Hence I is 2 -primal and so any minimal completely prime ideal containing I is a minimal prime ideal containing I by [Theorem, 5]. So P is a minimal prime ideal of N containing I and $N(P)=P$. Hence we have $P=N(P)=N_{P}=$ $\bar{N}_{P}=P(I)$ proving that I is completely 2-primal.

Corollary 7 (4, Proposition 1). Given a ring R the following conditions are equivalent:

1. R is completely 2-primal;
2. R is 2-primal and $P_{c}(R)$ is completely prime;
3. Every minimal prime ideal of R and $P_{c}(R)$ are both completely prime;
4. $C(P(R))=R \backslash P(R)$;
5. $N(P)=N_{P}=\bar{N}_{P}=P(R)$ for any minimal prime ideal P of R;
6. $N(P)=N_{P}=\bar{N}_{P}=P(R)$ for any minimal completely prime ideal P of R.

Theorem 8. Let I be an ideal of a near-ring N. Then the following are equivalent:

1. I is completely 2-primal.
2. $P(I)$ is a left and right symmetric ideal of N and $P(I)$ is prime.
3. $x y \in P(I)$ implies $y N x \subseteq P(I)$ for every $x, y \in N$ and $P(I)$ is prime.
4. $x y \in P(I)$ implies $y x \in P(I)$ for every $x, y \in N$ and $P(I)$ is prime.
5. $P(I)$ has the strong IFP and $P(I)$ is prime.
6. $x_{1} x_{2} x_{3} \ldots x_{n} \in P(I)$ implies $<x_{1}><x_{2}><x_{3}>\ldots<x_{n}>\subseteq P(I)$ for all $x_{1}, x_{2}, x_{3}, \ldots, x_{n} \in N$ and $P(I)$ is prime.
7. $P(I)$ is a semi-symmetric ideal of N and $P(I)$ is prime.

Proof. (1) \Rightarrow (2) Clearly, $P(I)$ is prime. If $x y z \in P(I)$, then $(z x y)^{2}=$ $z x y z x y \in P(I)$ and so $z x y \in P(I)$. This implies that $(x y x z)^{2} \in P(I)$. Thus $x y x z \in P(I)$ and $(y x z y x)^{2} \in P(I)$ and hence yxzyx $\in P(I)$. Therefore $(x z y)^{3} \in P(I)$ and so $x z y \in P(I)$. Moreover $x z y \in P(I)$ implies $(y x z)^{2} \in P(I)$ and so $y x z \in P(I)$. Therefore $P(I)$ is left and right symmetric.
(2) \Rightarrow (3) Let $x y \in P(I)$. Since N has an identity, we have $y x \in P(I)$. Let $n \in N$. Now $n y x \in P(I)$. Since $P(I)$ is left symmetric $y n x \in P(I)$. Therefore $y N x \subseteq P(I)$.
$(3) \Rightarrow(4)$ is obvious.
(4) \Rightarrow (5) If $x y \in P(I)$ then by Lemma $3,<x>y \subseteq P(I)$. Hence $y<x>\subseteq P(I)$. Again by Lemma $3,<y><x>\subseteq P(I)$. Hence $<x><$ $y>\subseteq P(I)$ and so $<x>N<y>\subseteq<x><y>\subseteq P(I)$.
(5) \Rightarrow (6) Let $a^{2} \in P(I)$. Since $P(I)$ has the strong IFP and N has identity, we have $\langle a\rangle^{2} \subseteq P(I)$. Since $P(I)$ is prime $<a>\subseteq P(I)$ and so $a \in P(I)$. If $x y \in P(I)$ then $(y x)^{2}=y x y x \in P(I)$ and so $y x \in P(I)$. Assume $x_{1} x_{2} \ldots x_{n} \in$ $P(I)$. Then $x_{1} \in\left(P(I): x_{2} x_{3} \ldots x_{n}\right)$. Hence by Lemma $3,<x_{1}>\subseteq(P(I)$: $\left.x_{2} x_{3} \ldots x_{n}\right)$ and $<x_{1}>x_{2} x_{3} \ldots x_{n} \subseteq P(I)$. Hence $x_{2} x_{3} \ldots x_{n}<x_{1}>\subseteq P(I)$ and $x_{2} \in\left(P(I): x_{3} \ldots x_{n}<x_{1}>\right)$. So $<x_{2}>\in\left(P(I): x_{3} \ldots x_{n}<x_{1}>\right)$ and $<x_{2}>x_{3} \ldots x_{n}<x_{1}>\subseteq P(I)$. Hence $x_{3} \ldots x_{n}<x_{1}><x_{2}>\subseteq P(I)$. Proceeding in this manner, we get that $<x_{1}><x_{2}>\ldots<x_{n}>\subseteq P(I)$.
$(6) \Rightarrow(7)$ is obvious.
$(7) \Rightarrow(6)$ Let $a b \in P(I)$. Then $(b a)^{2}=b a b a \in P(I)$. Hence $<b a>^{2} \subseteq P(I)$. Since $P(I)$ is prime $<b a>\subseteq P(I)$ and hence $b a \in P(I)$. Thus $x_{1} x_{2} x_{3} \ldots x_{n} \in$ $P(I)$ implies $<x_{1}><x_{2}><x_{3}>\ldots<x_{n}>\subseteq P(I)$.
(6) \Rightarrow (1) Let $a b \in P(I)$. Then $<a>\subseteq P(I)$. Since $P(I)$ is prime, $<a>\subseteq P(I)$ or $\subseteq P(I)$. Hence $a \in P(I)$ or $b \in P(I)$, showing that I is completely 2-primal.

Definition 9. A near-ring N is said to be strongly completely 2-primal if N is completely 2-primal and it has only one non zero idempotent.

Note: The notion of strongly completely 2 -primal and completely 2-primal coincide in rings.

Completely 2-primal near-rings need not be strongly completely 2 -primal as the following example shows.

Example 10. Let $N=\{0, a, b, c\}$ be the Klein's four group. Define multiplication in N as follows.

.	0	a	b	c
0	0	0	0	0
a	0	0	0	a
b	0	a	b	b
c	0	a	b	c

Then $(N,+,$.$) is a near-ring (see Pilz [6, p. 408] scheme 8$). N is completely 2 -primal and has two nonzero idempotents, b and c.

Theorem 11. N is strongly completely 2-primal and regular if and only if N is a near-field.

Proof. Assume that N is strongly completely 2 -primal and regular. Let $a \in N$. Then there exists $x \in N$ such that $a=a x a$. Clearly $x a$ and $a x$ are nonzero idempotents and therefore $x a=a x=1$, showing that N is a nearfield. The converse is obvious.

Corollary 12. Let R be a ring. Then R is completely 2-primal and regular if and only if R is a division ring.

Note: The above corollary will fail for near-rings as the following example shows.

Example 13. Let $N=\{0, a, b, c\}$ be the Klein's four group. Define multiplication in N as follows.

.	0	a	b	c
0	0	0	0	0
a	0	a	a	a
b	0	b	b	b
c	0	c	c	c

Then $(N,+,$.$) is a near-ring (see Pilz [6, p. 408] scheme 1$). N is completely 2 -primal and regular. But N is not a near-field.

Theorem 14. N is completely 2-primal if and only if $P(N)$ is both prime and 2-primal

Proof. Assume that N is completely 2-primal. Then $P(N)$ is completely prime and hence $P(N)$ is prime. Now let us show that $P(N)$ is 2-primal. Now $P(P(N))=P(N)$ is completely semiprime. Hence $P(N)$ is 2-primal, by [2, Lemma 2.2(v)].

Conversely assume that $P(N)$ is both prime and 2-primal. Let $x^{2} \in P(N)$. Then $x \in P(N)$, by [2, Lemma 2.2(ii)]. Hence $P(N)$ is completely semiprime. Let $x y \in P(N)$. Then $x \in(P(N): y)$. Since $P(N)$ is completely semiprime, $(P(N): y)$ is an ideal and hence $<x>\subseteq(P(N): y)$. Then $<x>y \subseteq P(N)$. Now $y<x>\subseteq P(N)$ and hence $y \in(P(N):<x>)$. Thus $<y><x>\subseteq$ $P(N)$. Since $P(N)$ is prime $x \in P(N)$ or $y \in P(N)$, showing that N is completely 2-primal.

References

[1] G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and associated radicals, Proc. Biennial Ohio State-Dension Conference 1992, edited by S. K. Jain and S.T. Rizvi, World Scientific, SingaporeNew Jersey-London-Hong Kong, 1993, 102-109.
[2] G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Prime Ideals and Prime Radicals in Near-Rings, Mh. Math. 117, 1994, 179-197.
[3] C. Y. Hong and T. k. Twak, On Minimal Strongly prime ideals, Comm. Algebra 28 no. 10 (2000), 4867-4878.
[4] Kwang-Ho kang, Byung-Ok Kim, Sang-Jig Nam, and Su-Ho Sohn, Rings whose prime radicals are completely prime, Comm. Korean Math. Soc. 20 no. 3 (2005), pp. 457-466.
[5] Y. Lee, C. Huh, and H. K. Kim, Questions on 2-primal rings, Comm. Algebra 26 no. 2 (1998), 595-600.
[6] G. Pilz, Near-rings, North-Holland, Amsterdam, 1983.
[7] G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc., 184(1973), 43-60.

[^0]: *2000Mathematics Subject Classification: 16Y30.
 †E-mail: dheenap@yahoo.com
 ${ }^{\ddagger}$ E-mail: gskumarau@gmail.com

