Completely 2-primal Ideals in Near-rings*

P. Dheena[†]and G. SatheeshKumar[‡]

Professor of Mathematics, Department of Mathematics, Annamalai University, Annamalainagar - 608 002, India.

Received February 5, 2007, Accepted May 7, 2007.

Abstract

We introduce the notion of completely 2-primal ideals in near-rings. We have also introduced strongly completely 2-primal near-rings. An ideal I of a near-ring N is said to be completely 2-primal if the prime radical of I, P(I) is completely prime. We have obtained equivalent conditions for an ideal I to be completely 2-primal.

Keywords and Phrases: 2-primal, Completely 2-primal, Strongly completely 2-primal, Prime radical.

1. Introduction

Throughout this paper N denotes a zero-symmetric near-ring with identity. An ideal P of N is called prime if for any two ideals A and B of N, $AB \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. An ideal P of N is called completely prime if $ab \in P$ implies $a \in P$ or $b \in P$, for any $a, b \in N$. An ideal P of N is called completely semiprime if $a^2 \in P$ implies $a \in P$, for any $a \in N$. Given a near-ring N, the intersection of all prime ideals called the prime radical of N is denoted by P(N) and the set of all nilpotent elements is denoted by N(N). P(I) denotes the prime radical of I which is the intersection of all prime ideals containing I and $P_c(I)$ denotes the completely prime radical of I which is the intersection

^{*2000} Mathematics Subject Classification: 16Y30.

[†]E-mail: dheenap@yahoo.com

[‡]E-mail: gskumarau@gmail.com

of all completely prime ideals containing I. An ideal I of a near-ring N is called 2-primal if P(N/I) = N(N/I). N is called 2-primal if the zero ideal of N is 2-primal (Equivalently P(N) = N(N)).

An ideal I of N is said to have the insertion of factors property (IFP) if $xy \in I$ implies $xNy \subseteq I$ for $x, y \in N$. An ideal I of N has the strict IFP if $xy \in I$ implies $\langle x \rangle N \langle y \rangle \subseteq I$ for $x, y \in N$. In a ring IFP implies strict IFP but in a near-ring IFP does not imply strict IFP. An ideal I of N is called right (left) symmetric if $xyz \in I$ implies $xzy \in I(yxz \in I)$. An ideal I of N is said to be semi-symmetric if for any $x \in N$, $x^n \in I$ for some positive integer n implies $\langle x \rangle^n \subseteq I$. For an ideal I of N, $\sqrt{I} = \{x \in N | x^n \in I \text{ for some positive integer } n \text{ integer } n\}$. If A and B are ideals of N then $(A : B) = \{x \in N | xB \subseteq A\}$ is an ideal of N. A near-ring N is called regular if for every $a \in N$, there exists an $x \in N$ such that a = axa. A near-ring N is called a domain if every nonzero element is not a zero divisor.

An ideal I of a near-ring N is called completely 2-primal if P(I) is completely prime. A near-ring N is called completely 2-primal if the zero ideal is completely 2-primal i.e, P(N) is completely prime. It is obvious that domains are completely 2-primal and completely 2-primal near-rings are 2-primal. We use $P_c(N)$ for the intersection of all completely prime ideals of a near-ring N, and define $C(P(I)) = \{n \in N | n + P(I) \text{ is not a zero divisor } N/P(I)\}$. Birkenmeier-Heatherly-Lee [2] have proved that an ideal I of a near-ring N is 2-primal if and only if P(I) is completely semiprime.

If I is an ideal of a near-ring N and P is a prime ideal of N containing I, then

 $N_{I}(P) = \{a \in N | aN < b > \subseteq P(I) \text{ for some } b \in N \setminus P\};$ $N_{IP} = \{a \in N | ab \in P(I) \text{ for some } b \in N \setminus P\};$ $\overline{N}_{IP} = \{a \in N | a^{m} \in N_{P} \text{ for some positive integer } m\}.$ If the context is clear we write N(P) $(N_{P}, \overline{N}_{P})$ instead of $N_{I}(P)(N_{IP}, \overline{N}_{IP})$

If I = 0, we have defined N(P) as $N_I(P) = \{a \in N | aN < b > \subseteq P(N) \text{ for some } b \in N \setminus P\}$. For rings Kwang-Ho kang, Byung-Ok Kim, Sang-Jig Nam, and Su-Ho Sohn [4] defined $N(P) = \{a \in R | aRb \subseteq P(R) \text{ for some } b \in R \setminus P\}$. These two definitions coincide in rings. If R is a ring and if $aRb \subseteq P(R)$ then we have $b \in (P(R) : aR)_r = \{x \in R | aRx \subseteq P(R)\}$. Since R is a ring, $(P(R) : aR)_r$ is an ideal. Hence $\langle b \rangle \subseteq (P(R) : aR)_r$. Thus $aR \langle b \rangle \subseteq P(R)$.

Kwang-Ho kang, Byung-Ok Kim, Sang-Jig Nam, and Su-Ho Sohn [4] have obtained equivalent conditions for a ring to be completely 2-primal. We have extended these results to near-rings. We have also obtained more equivalent conditions for a near-ring to be completely 2-primal. For basic notations and terminology we refer to Pilz [6].

Lemma 1. Let I be an ideal of N. Then the following are equivalent: (1) I is 2-primal. (2) $P(I) = \sqrt{I}$

Proof. (1) \Rightarrow (2) Clearly $P(I) \subseteq \sqrt{I}$. Let $x \in \sqrt{I}$. Then $x^n \in I$ for some positive integer n. Now $x^n + I = I$ implies $x + I \in N(R/I) = P(R/I)$ as I is 2-primal. Let P be an arbitrary prime ideal in N containing I. Then $x + I \in P + I$ as P + I is a prime ideal in R/I. Hence $x \in P$ and thus $x \in P(I)$.

 $(2) \Rightarrow (1)$ Clearly $P(N/I) \subseteq N(N/I)$. Let $x + I \in N(N/I)$. Then there exists a positive integer n such that $x^n \in I$. Hence $x \in \sqrt{I}$. Thus $x + I \in P(N/I)$.

Lemma 2. If I is an ideal of a near-ring N and P is a prime ideal of N containing I then $N(P) \subseteq P$, $N(N) \subseteq \overline{N}_P$ and $N(P) \subseteq N_P \subseteq \overline{N}_P$.

Proof. Let $x \in N(P)$. Then $xN < b \geq P(I)$ for some $b \in N \setminus P$. Since N has identity, $x < b \geq P(I) \subseteq P$ for some $b \in N \setminus P$. Hence $x \in (P : < b >)$. Since (P : < b >) is an ideal, $< x \geq (P : < b >)$. Thus $< x > < b \geq P$. Since P is prime, we have $< x \geq P$. Thus $x \in P$.

Let $x \in N(N)$. Then $x^n = 0$ for some positive integer n. Hence $x^n b = 0$ for every $b \in N \setminus P$. Hence $x \in \overline{N}_P$.

Let $x \in N(P)$. Then $xN < b \geq P(I)$ for some $b \in N \setminus P$. Therefore $x < b \geq P(I)$ and hence $xb \in P(I)$. Thus $x \in N_P$. And $x \in N_P$ implies $x \in \overline{N_P}$. \Box

Lemma 3. For any ideal I of N, if $ab \in I$ implies $ba \in I$ for any $a, b \in N$, then (I : S) is an ideal for any subset S of N.

Theorem 4. If I is a 2-primal ideal and P is a prime ideal of N then $N(P) = \cap \{Q\text{-prime ideal of } N \text{ containing } I : Q \subseteq P\}.$

Proof. Let Q be a prime ideal of N containing I such that $Q \subseteq P$. Then $N(P) \subseteq N(Q) \subseteq Q$. So we have $N(P) \subseteq \cap \{Q\text{-prime ideal of } N \text{ containing } I : Q \subseteq P\}$. Suppose $a \notin N(P)$. We shall find a prime ideal Q of N containing I such that $a \notin Q$ and $Q \subseteq P$. If $S = \{a, a^2, a^3, \ldots\}$ then S is a multiplicative system that does not contain 0. Clearly $L = N \setminus P$ is an m-system. Let T be the set of all non-zero elements of N of the form $a^{t_0}x_1a^{t_1}x_2a^{t_2}\ldots x_na^{t_n}$, where $x_i \in L$ and $t_i \in \{0\} \cup Z^+$, where Z^+ is the

set of all positive integers. Let $M = S \cup T$. Note that $L \subset T$. We claim that M is an m-system. If $x, y \in S$ then $xay \in S$. Let $x \in S, y \in T$ with $x = a^s$, $y = a^{t_0} x_1 a^{t_1} x_2 a^{t_2} \dots x_n a^{t_n}$. If $xay \neq 0$ then $xay \in T$. Suppose xay = 0. Since $x_1, x_2 \in L$ then there exists $x'_1 \in \langle x_1 \rangle$ and there exists $x'_2 \in \langle x_2 \rangle$ such that $x'_1 x'_2 \in L$. Since $x'_1 x'_2, x_3 \in L$ there exists $x'_{12} \in \langle x_1 \rangle$ $x'_1 x'_2 > \subseteq \langle \langle x_1 \rangle \langle x_2 \rangle \rangle$ and there exists $x'_3 \in \langle x_3 \rangle$ such that $x'_{12} x'_3 \in L$. Continuing this process we arrive at $x'_{123...n-2}x'_{n-1}$, $x_n \in L$. Now there exists $x'_{123...n-1} \in x'_{123...n-2} x'_{n-1} > \subseteq < \ldots < < x_1 > < x_2 > < x_3 >> \ldots <$ $x_{n-1} >>$ and there exists $x'_n \in \langle x_n \rangle$ such that $w = x'_{123\dots n-1}x'_n \in L$. Since $xay = 0, xay \in P(I)$. This implies $a^saa^{t_0}x_1a^{t_1}x_2a^{t_2}\dots x_na^{t_n} \in P(I)$. Since I is 2-primal, P(I) is completely semiprime and hence $x_1x_2...x_na^{1+s+t_0+...+t_n} \in$ P(I). Choose $m = 1 + s + t_0 + \ldots + t_n$. Then $x_1 x_2 \ldots x_n a^m \in P(I)$. By Lemma $3, < x_1 > < x_2 > \ldots < x_n > < a^m > \subseteq P(I)$. Again $<< x_1 > < x_2 > > < x_3 >$ $\ldots < x_n > < a^m > \subseteq P(I)$. Again applying Lemma 3, $< < < x_1 > < x_2 > > <$ $x_3 >> < x_4 > \ldots < x_n > < a^m > \subseteq P(I)$. Continuing this process we arrive at $< \ldots << x_1 >< x_2 >> < x_3 >> \ldots < x_{n_1} >> < x_n >< a^m > \subseteq P(I)$ and so $x_{123...n-1}x'_n a^m \in P(I)$. Hence $wa^m \in P(I)$. Since P(I) is completely semiprime, we have $(aw)^m \in P(I)$ and hence $aw \in P(I)$. Therefore $a \in N_P = N(P)$, a contradiction. Similarly if $x, y \in T$ then $xay \neq 0$ and $xay \in T$. This shows that M is an m-system that is disjoint from (0). Hence there is a prime ideal Q that is disjoint from M. Then $a \notin Q$ and $Q \subseteq P$, completing the proof.

Theorem 5. I is 2-primal if and only if every minimal prime ideal of N containing I is completely prime.

Proof. Assume that I is 2-primal. Let P be a minimal prime ideal of N containing I and let M be the multiplicative subsemigroup of N generated by $N \setminus P$. We claim that $P(I) \cap M = \phi$. If not choose an element $y \in P(I) \cap M$. Since $y \in M$, there exists $x_1, x_2, \ldots, x_n \in N \setminus P$ such that $y = x_1 x_2 \ldots x_n \in P(I)$. Since I is 2-primal, $\langle x_1 \rangle \langle x_2 \rangle \ldots \langle x_n \rangle \subseteq P(I) \subseteq P$. Thus $\langle x_i \rangle \subseteq P$ for some i.

Hence $x_i \in P$ for some *i* which contradicts our assumption. Let $K = \{J|J$ is an ideal of *N* containing *I* and $J \cap M = \phi\}$. *K* is not empty as $P(I) \in K$. By Zorn's lemma *K* contains a maximal element say *Q*. Hence $Q \subseteq N \setminus M$. Now we show that *Q* is prime. Otherwise there exists ideals *A* and *B* such that $AB \subseteq Q$, $A \notin Q$, $B \notin Q$. Choose $y \in A \setminus Q$ and $z \in B \setminus Q$. By the maximality of *Q*, we have $(Q + \langle y \rangle) \cap M \neq \phi$ and $(Q + \langle z \rangle) \cap M \neq \phi$. Let $a \in (Q + \langle y \rangle) \cap M$ and $b \in (Q + \langle z \rangle) \cap M$. Then $ab \in M$. Let a = p + r and b = q + s for some $p, q \in Q$ and $r \in \langle y \rangle$ and $s \in \langle z \rangle$. Then $ab = (p+r)(q+s) = p(q+s) + r(q+s) - rs + rs \in Q$, for $rs \in \langle y \rangle \langle z \rangle \subseteq AB \subseteq Q$. Thus $ab \in Q \cap M$, a contradiction. Hence Q is a prime ideal. Now $P(I) \subseteq Q \subseteq N \setminus M \subseteq P$. By the minimality of P we have $Q = N \setminus M = P$. Since M is a multiplicative semigroup, P is a completely prime ideal.

Conversely assume that every minimal prime ideal of N containing I is completely prime. Clearly $P(N/I) \subseteq N(N/I)$. Let $x + I \in N(N/I)$. Then $x^n \in I$ for some positive integer n. Let P + I be a minimal prime ideal in N/I. Then P is a minimal prime ideal of N containing I and hence $x \in P$. Thus $x + I \in P_m(N/I)$ which is the intersection of all minimal prime ideals in N/I. Since the intersection of all minimal prime ideals in N/I coincides with the intersection of all prime ideals in N/I, $x + I \in P(N/I)$. Hence I is 2-primal. \Box

Theorem 6. Given an ideal I of a near-ring N the following conditions are equivalent:

- 1. I is completely 2-primal;
- 2. I is 2-primal and $P_c(I)$ is completely prime;
- 3. Every minimal prime ideal of N containing I and $P_c(I)$ are both completely prime;
- 4. $C(P(I)) = N \setminus P(I);$
- 5. $N(P) = N_P = \overline{N}_P = P(I)$ for any minimal prime ideal P of N containing I;
- 6. $N(P) = N_P = \overline{N}_P = P(I)$ for any minimal completely prime ideal P of N containing I.

Proof. (1) \Rightarrow (2) Clearly, *I* is 2-primal. Therefore $P(I) = P_c(I)$. Since *I* is completely 2-primal, P(I) is completely prime and hence $P_c(I)$ is completely prime.

 $(2) \Rightarrow (1)$ Since I is 2-primal, P(I) is completely prime. Therefore I is completely 2-primal.

 $(2) \Rightarrow (3)$ Since I is 2-primal by Theorem 5, every minimal prime ideal of N containing I is completely prime.

 $(3) \Rightarrow (2)$ Again using Theorem 5, we have I is 2-primal.

 $(1) \Leftrightarrow (4)$ is a restatement of the definition.

(1) \Rightarrow (5) Let *P* be a minimal prime ideal of *N* containing *I*. Clearly $N(P) \subseteq N_P \subseteq \overline{N}_P$. Let $a \in \overline{N}_P$. Then $a^n b \in P(I)$ for some $b \in N \setminus P$ and for a positive integer *n*. Since P(I) is completely prime $a \in P(I)$. Thus $a \in N(P)$. Hence $N(P) = N_P = \overline{N}_P$. By Theorem 4, N(P) = P. Since P(I) is completely prime, P(I) is the unique minimal prime ideal of *N* containing *I* and thus $N(P) = N_P = \overline{N}_P = P(I)$.

 $(5) \Rightarrow (6)$ Let $a + I \in N(N/I)$. Then $a^n \in I$, for some positive integer n. Thus $a \in \overline{N_P} = N_P = N(P) = P(I)$ for any minimal prime ideal P of N containing I. Hence I is 2-primal. So every minimal prime ideal of N containing I is completely prime by Theorem 5. Thus every minimal completely prime ideal of N containing I is a minimal prime ideal of N containing I.

(6) \Rightarrow (1) Let *P* be a minimal completely prime ideal of *N* containing *I*. Hence *I* is 2-primal and so any minimal completely prime ideal containing *I* is a minimal prime ideal containing *I* by [Theorem, 5]. So *P* is a minimal prime ideal of *N* containing *I* and N(P) = P. Hence we have $P = N(P) = N_P = \overline{N_P} = \overline{N_P} = P(I)$ proving that *I* is completely 2-primal.

Corollary 7 (4, Proposition 1). Given a ring R the following conditions are equivalent:

- 1. R is completely 2-primal;
- 2. R is 2-primal and $P_c(R)$ is completely prime;
- 3. Every minimal prime ideal of R and $P_c(R)$ are both completely prime;
- 4. $C(P(R)) = R \setminus P(R);$
- 5. $N(P) = N_P = \overline{N}_P = P(R)$ for any minimal prime ideal P of R;
- 6. $N(P) = N_P = \overline{N}_P = P(R)$ for any minimal completely prime ideal P of R.

Theorem 8. Let I be an ideal of a near-ring N. Then the following are equivalent:

- 1. I is completely 2-primal.
- 2. P(I) is a left and right symmetric ideal of N and P(I) is prime.

- 3. $xy \in P(I)$ implies $yNx \subseteq P(I)$ for every $x, y \in N$ and P(I) is prime.
- 4. $xy \in P(I)$ implies $yx \in P(I)$ for every $x, y \in N$ and P(I) is prime.
- 5. P(I) has the strong IFP and P(I) is prime.
- 6. $x_1 x_2 x_3 \dots x_n \in P(I)$ implies $\langle x_1 \rangle \langle x_2 \rangle \langle x_3 \rangle \dots \langle x_n \rangle \subseteq P(I)$ for all $x_1, x_2, x_3, \dots, x_n \in N$ and P(I) is prime.
- 7. P(I) is a semi-symmetric ideal of N and P(I) is prime.

Proof. (1) \Rightarrow (2) Clearly, P(I) is prime. If $xyz \in P(I)$, then $(zxy)^2 = zxyzxy \in P(I)$ and so $zxy \in P(I)$. This implies that $(xyxz)^2 \in P(I)$. Thus $xyxz \in P(I)$ and $(yxzyx)^2 \in P(I)$ and hence $yxzyx \in P(I)$. Therefore $(xzy)^3 \in P(I)$ and so $xzy \in P(I)$. Moreover $xzy \in P(I)$ implies $(yxz)^2 \in P(I)$ and so $yxz \in P(I)$. Therefore P(I) is left and right symmetric.

 $(2) \Rightarrow (3)$ Let $xy \in P(I)$. Since N has an identity, we have $yx \in P(I)$. Let $n \in N$. Now $nyx \in P(I)$. Since P(I) is left symmetric $ynx \in P(I)$. Therefore $yNx \subseteq P(I)$.

 $(3) \Rightarrow (4)$ is obvious.

 $(4) \Rightarrow (5)$ If $xy \in P(I)$ then by Lemma 3, $\langle x \rangle y \subseteq P(I)$. Hence $y \langle x \rangle \subseteq P(I)$. Again by Lemma 3, $\langle y \rangle \langle x \rangle \subseteq P(I)$. Hence $\langle x \rangle \langle y \rangle \subseteq P(I)$ and so $\langle x \rangle N \langle y \rangle \subseteq \langle x \rangle \langle y \rangle \subseteq P(I)$.

 $(5) \Rightarrow (6)$ Let $a^2 \in P(I)$. Since P(I) has the strong IFP and N has identity, we have $\langle a \rangle^2 \subseteq P(I)$. Since P(I) is prime $\langle a \rangle \subseteq P(I)$ and so $a \in P(I)$. If $xy \in P(I)$ then $(yx)^2 = yxyx \in P(I)$ and so $yx \in P(I)$. Assume $x_1x_2 \dots x_n \in$ P(I). Then $x_1 \in (P(I) : x_2x_3 \dots x_n)$. Hence by Lemma 3, $\langle x_1 \rangle \subseteq (P(I) :$ $x_2x_3 \dots x_n)$ and $\langle x_1 \rangle x_2x_3 \dots x_n \subseteq P(I)$. Hence $x_2x_3 \dots x_n \langle x_1 \rangle \subseteq P(I)$ and $x_2 \in (P(I) : x_3 \dots x_n \langle x_1 \rangle)$. So $\langle x_2 \rangle \in (P(I) : x_3 \dots x_n \langle x_1 \rangle)$ and $\langle x_2 \rangle x_3 \dots x_n \langle x_1 \rangle \subseteq P(I)$. Hence $x_3 \dots x_n \langle x_1 \rangle \langle x_2 \rangle = P(I)$. Proceeding in this manner, we get that $\langle x_1 \rangle \langle x_2 \rangle \dots \langle x_n \rangle \subseteq P(I)$.

 $(6) \Rightarrow (7)$ is obvious.

 $(7) \Rightarrow (6)$ Let $ab \in P(I)$. Then $(ba)^2 = baba \in P(I)$. Hence $\langle ba \rangle^2 \subseteq P(I)$. Since P(I) is prime $\langle ba \rangle \subseteq P(I)$ and hence $ba \in P(I)$. Thus $x_1x_2x_3\ldots x_n \in P(I)$ implies $\langle x_1 \rangle \langle x_2 \rangle \langle x_3 \rangle \ldots \langle x_n \rangle \subseteq P(I)$.

(6) \Rightarrow (1) Let $ab \in P(I)$. Then $\langle a \rangle \langle b \rangle \subseteq P(I)$. Since P(I) is prime, $\langle a \rangle \subseteq P(I)$ or $\langle b \rangle \subseteq P(I)$. Hence $a \in P(I)$ or $b \in P(I)$, showing that I is completely 2-primal. **Definition 9.** A near-ring N is said to be strongly completely 2-primal if N is completely 2-primal and it has only one non zero idempotent.

Note: The notion of strongly completely 2-primal and completely 2-primal coincide in rings.

Completely 2-primal near-rings need not be strongly completely 2-primal as the following example shows.

Example 10. Let $N = \{0, a, b, c\}$ be the Klein's four group. Define multiplication in N as follows.

	0	a	b	с
0	0	0	0	0
a b	0	0	0	a
b	0	a	b	b
с	0	a	b	с

Then (N, +, .) is a near-ring (see Pilz [6, p. 408] scheme 8). N is completely 2-primal and has two nonzero idempotents, b and c.

Theorem 11. N is strongly completely 2-primal and regular if and only if N is a near-field.

Proof. Assume that N is strongly completely 2-primal and regular. Let $a \in N$. Then there exists $x \in N$ such that a = axa. Clearly xa and ax are nonzero idempotents and therefore xa = ax = 1, showing that N is a near-field. The converse is obvious.

Corollary 12. Let R be a ring. Then R is completely 2-primal and regular if and only if R is a division ring.

Note: The above corollary will fail for near-rings as the following example shows.

Example 13. Let $N = \{0, a, b, c\}$ be the Klein's four group. Define multiplication in N as follows.

	0	a	b	с
0	0	0	0	0
a	0	a	a	a
b	0	b	b	b
с	0	с	с	с

Then (N, +, .) is a near-ring (see Pilz [6, p. 408] scheme 1). N is completely 2-primal and regular. But N is not a near-field.

Theorem 14. N is completely 2-primal if and only if P(N) is both prime and 2-primal

Proof. Assume that N is completely 2-primal. Then P(N) is completely prime and hence P(N) is prime. Now let us show that P(N) is 2-primal. Now P(P(N)) = P(N) is completely semiprime. Hence P(N) is 2-primal, by [2, Lemma 2.2(v)].

Conversely assume that P(N) is both prime and 2-primal. Let $x^2 \in P(N)$. Then $x \in P(N)$, by [2, Lemma 2.2(ii)]. Hence P(N) is completely semiprime. Let $xy \in P(N)$. Then $x \in (P(N) : y)$. Since P(N) is completely semiprime, (P(N) : y) is an ideal and hence $\langle x \rangle \subseteq (P(N) : y)$. Then $\langle x \rangle y \subseteq P(N)$. Now $y \langle x \rangle \subseteq P(N)$ and hence $y \in (P(N) : \langle x \rangle)$. Thus $\langle y \rangle \langle x \rangle \subseteq P(N)$. Now $y \langle x \rangle \subseteq P(N)$ is prime $x \in P(N)$ or $y \in P(N)$, showing that N is completely 2-primal.

References

- G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and associated radicals, *Proc. Biennial Ohio State-Dension Conference* 1992, edited by S. K. Jain and S.T. Rizvi, World Scientific, Singapore-New Jersey-London-Hong Kong, 1993, 102-109.
- [2] G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Prime Ideals and Prime Radicals in Near-Rings, *Mh. Math.* 117, 1994, 179-197.
- [3] C. Y. Hong and T. k. Twak, On Minimal Strongly prime ideals, Comm. Algebra 28 no. 10 (2000), 4867-4878.
- [4] Kwang-Ho kang, Byung-Ok Kim, Sang-Jig Nam, and Su-Ho Sohn, Rings whose prime radicals are completely prime, *Comm. Korean Math. Soc.*20 no. 3 (2005), pp. 457-466.
- [5] Y. Lee, C. Huh, and H. K. Kim, Questions on 2-primal rings, Comm. Algebra 26 no. 2 (1998), 595-600.

- [6] G. Pilz, Near-rings, North-Holland, Amsterdam, 1983.
- [7] G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, *Trans. Amer. Math. Soc.*, **184**(1973), 43-60.