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Abstract

We introduce the notion of completely 2-primal ideals in near-rings.
We have also introduced strongly completely 2-primal near-rings. An
ideal I of a near-ring N is said to be completely 2-primal if the prime
radical of I, P (I) is completely prime. We have obtained equivalent
conditions for an ideal I to be completely 2-primal.
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1. Introduction

Throughout this paper N denotes a zero-symmetric near-ring with identity.
An ideal P of N is called prime if for any two ideals A and B of N, AB ⊆ P
implies A ⊆ P or B ⊆ P. An ideal P of N is called completely prime if ab ∈ P
implies a ∈ P or b ∈ P, for any a, b ∈ N. An ideal P of N is called completely
semiprime if a2 ∈ P implies a ∈ P, for any a ∈ N. Given a near-ring N, the
intersection of all prime ideals called the prime radical of N is denoted by
P (N) and the set of all nilpotent elements is denoted by N(N). P (I) denotes
the prime radical of I which is the intersection of all prime ideals containing
Iand Pc(I) denotes the completely prime radical of I which is the intersection
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of all completely prime ideals containing I. An ideal I of a near-ring N is
called 2-primal if P (N/I) = N(N/I). N is called 2-primal if the zero ideal of
N is 2-primal (Equivalently P (N) = N(N)).

An ideal I of N is said to have the insertion of factors property (IFP) if
xy ∈ I implies xNy ⊆ I for x, y ∈ N. An ideal I of N has the strict IFP if
xy ∈ I implies < x > N < y >⊆ I for x, y ∈ N. In a ring IFP implies strict
IFP but in a near-ring IFP does not imply strict IFP. An ideal I of N is called
right (left) symmetric if xyz ∈ I implies xzy ∈ I(yxz ∈ I). An ideal I of N is
said to be semi symmetric if for any x ∈ N, xn ∈ I for some positive integer n
implies < x >n⊆ I. For an ideal I of N,

√
I = {x ∈ N |xn ∈ I for some positive

integer n}. If A and B are ideals of N then (A : B) = {x ∈ N |xB ⊆ A} is an
ideal of N. A near-ring N is called regular if for every a ∈ N, there exists an
x ∈ N such that a = axa. A near-ring N is called a domain if every nonzero
element is not a zero divisor.

An ideal I of a near-ring N is called completely 2-primal if P (I) is com-
pletely prime. A near-ring N is called completely 2-primal if the zero ideal is
completely 2-primal i.e, P (N) is completely prime. It is obvious that domains
are completely 2-primal and completely 2-primal near-rings are 2-primal. We
use Pc(N) for the intersection of all completely prime ideals of a near-ring
N, and define C(P (I)) = {n ∈ N |n + P (I) is not a zero divisor N/P (I)}.
Birkenmeier-Heatherly-Lee [2] have proved that an ideal I of a near-ring N is
2-primal if and only if P (I) is completely semiprime.

If I is an ideal of a near-ring N and P is a prime ideal of N containing I,
then
NI(P ) = {a ∈ N |aN < b >⊆ P (I) for some b ∈ N\P};
NIP = {a ∈ N |ab ∈ P (I) for some b ∈ N\P};
N IP = {a ∈ N |am ∈ NP for some positive integer m}.
If the context is clear we write N(P ) (NP , NP ) instead of NI(P )(NIP ,N IP )

If I = 0, we have defined N(P ) as NI(P ) = {a ∈ N |aN < b >⊆ P (N) for
some b ∈ N\P}. For rings Kwang-Ho kang, Byung-Ok Kim, Sang-Jig Nam,
and Su-Ho Sohn [4] defined N(P ) = {a ∈ R|aRb ⊆ P (R) for some b ∈ R\P}.
These two definitions coincide in rings. If R is a ring and if aRb ⊆ P (R)
then we have b ∈ (P (R) : aR)r = {x ∈ R|aRx ⊆ P (R)}. Since R is a ring,
(P (R) : aR)r is an ideal. Hence < b >⊆ (P (R) : aR)r. Thus aR < b >⊆ P (R).

Kwang-Ho kang, Byung-Ok Kim, Sang-Jig Nam, and Su-Ho Sohn [4] have
obtained equivalent conditions for a ring to be completely 2-primal. We have
extended these results to near-rings. We have also obtained more equivalent
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conditions for a near-ring to be completely 2-primal. For basic notations and
terminology we refer to Pilz [6].

Lemma 1. Let I be an ideal of N. Then the following are equivalent:
(1) I is 2-primal.
(2) P (I) =

√
I

Proof. (1) ⇒ (2) Clearly P (I) ⊆ √
I. Let x ∈ √

I. Then xn ∈ I for some
positive integer n. Now xn + I = I implies x + I ∈ N(R/I) = P (R/I) as
I is 2-primal. Let P be an arbitrary prime ideal in N containing I. Then
x + I ∈ P + I as P + I is a prime ideal in R/I. Hence x ∈ P and thus
x ∈ P (I).
(2) ⇒ (1) Clearly P (N/I) ⊆ N(N/I). Let x + I ∈ N(N/I). Then there exists
a positive integer n such that xn ∈ I. Hence x ∈ √

I. Thus x + I ∈ P (N/I).�

Lemma 2. If I is an ideal of a near-ring N and P is a prime ideal of N
containing I then N(P ) ⊆ P, N(N) ⊆ NP and N(P ) ⊆ NP ⊆ NP .

Proof. Let x ∈ N(P ). Then xN < b >⊆ P (I) for some b ∈ N\P. Since N
has identity, x < b >⊆ P (I) ⊆ P for some b ∈ N\P. Hence x ∈ (P :< b >).
Since (P :< b >) is an ideal, < x >⊆ (P :< b >). Thus < x >< b >⊆ P. Since
P is prime, we have < x >⊆ P. Thus x ∈ P.

Let x ∈ N(N). Then xn = 0 for some positive integer n. Hence xnb = 0 for
every b ∈ N\P. Hence x ∈ NP .
Let x ∈ N(P ). Then xN < b >⊆ P (I) for some b ∈ N\P. Therefore x < b >⊆
P (I) and hence xb ∈ P (I). Thus x ∈ NP . And x ∈ NP implies x ∈ NP . �

Lemma 3. For any ideal I of N, if ab ∈ I implies ba ∈ I for any a, b ∈ N,
then (I : S) is an ideal for any subset S of N.

Theorem 4. If I is a 2-primal ideal and P is a prime ideal of N then N(P ) =
∩{Q-prime ideal of N containing I : Q ⊆ P}.
Proof. Let Q be a prime ideal of N containing I such that Q ⊆ P. Then
N(P ) ⊆ N(Q) ⊆ Q. So we have N(P ) ⊆ ∩{Q-prime ideal of N contain-
ing I : Q ⊆ P}. Suppose a /∈ N(P ). We shall find a prime ideal Q of N
containing I such that a /∈ Q and Q ⊆ P. If S = {a, a2, a3, . . .} then
S is a multiplicative system that does not contain 0. Clearly L = N\P is
an m-system. Let T be the set of all non-zero elements of N of the form
at0x1a

t1x2a
t2 . . . xnatn , where xi ∈ L and ti ∈ {0} ∪ Z+, where Z+ is the
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set of all positive integers. Let M = S ∪ T. Note that L ⊆ T. We claim
that M is an m-system. If x, y ∈ S then xay ∈ S. Let x ∈ S, y ∈ T
with x = as, y = at0x1a

t1x2a
t2 . . . xnatn . If xay 	= 0 then xay ∈ T. Suppose

xay = 0. Since x1, x2 ∈ L then there exists x′
1 ∈< x1 > and there exists

x′
2 ∈< x2 > such that x′

1x
′
2 ∈ L. Since x′

1x
′
2, x3 ∈ L there exists x′

12 ∈<
x′

1x
′
2 >⊆<< x1 >< x2 >> and there exists x′

3 ∈< x3 > such that x′
12x

′
3 ∈ L.

Continuing this process we arrive at x′
123...n−2x

′
n−1, xn ∈ L. Now there ex-

ists x′
123...n−1 ∈< x′

123...n−2x
′
n−1 >⊆< . . . <<< x1 >< x2 >< x3 >> . . . <

xn−1 >> and there exists x′
n ∈< xn > such that w = x′

123...n−1x
′
n ∈ L. Since

xay = 0, xay ∈ P (I). This implies asaat0x1a
t1x2a

t2 . . . xnatn ∈ P (I). Since I
is 2-primal, P (I) is completely semiprime and hence x1x2 . . . xna1+s+t0+...+tn ∈
P (I). Choose m = 1+ s+ t0 + . . .+ tn. Then x1x2 . . . xnam ∈ P (I). By Lemma
3,< x1 >< x2 > . . . < xn >< am >⊆ P (I). Again << x1 >< x2 >>< x3 >
. . . < xn >< am >⊆ P (I). Again applying Lemma 3, <<< x1 >< x2 >><
x3 >>< x4 > . . . < xn >< am >⊆ P (I). Continuing this process we arrive at
< . . . <<< x1 >< x2 >>< x3 >> . . . < xn1 >>< xn >< am >⊆ P (I) and so
x123...n−1x

′
nam ∈ P (I). Hence wam ∈ P (I). Since P (I) is completely semiprime,

we have (aw)m ∈ P (I) and hence aw ∈ P (I). Therefore a ∈ NP = N(P ), a
contradiction. Similarly if x, y ∈ T then xay 	= 0 and xay ∈ T. This shows
that M is an m-system that is disjoint from (0). Hence there is a prime ideal
Q that is disjoint from M. Then a /∈ Q and Q ⊆ P, completing the proof. �

Theorem 5. I is 2-primal if and only if every minimal prime ideal of N
containing I is completely prime.

Proof. Assume that I is 2-primal. Let P be a minimal prime ideal of N
containing I and let M be the multiplicative subsemigroup of N generated by
N\P. We claim that P (I) ∩ M = φ. If not choose an element y ∈ P (I) ∩ M.
Since y ∈ M, there exists x1, x2, . . . , xn ∈ N\P such that y = x1x2 . . . xn ∈
P (I). Since I is 2-primal, < x1 >< x2 > . . . < xn >⊆ P (I) ⊆ P. Thus
< xi >⊆ P for some i.

Hence xi ∈ P for some i which contradicts our assumption. Let K = {J |J
is an ideal of N containing I and J ∩ M = φ}. K is not empty as P (I) ∈ K.
By Zorn’s lemma K contains a maximal element say Q. Hence Q ⊆ N\M.
Now we show that Q is prime. Otherwise there exists ideals A and B such
that AB ⊆ Q, A � Q, B � Q. Choose y ∈ A\Q and z ∈ B\Q. By the
maximality of Q, we have (Q+ < y >) ∩ M 	= φ and (Q+ < z >) ∩ M 	= φ.
Let a ∈ (Q+ < y >) ∩ M and b ∈ (Q+ < z >) ∩ M. Then ab ∈ M. Let
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a = p + r and b = q + s for some p, q ∈ Q and r ∈< y > and s ∈< z > . Then
ab = (p + r)(q + s) = p(q + s) + r(q + s)− rs + rs ∈ Q, for rs ∈< y >< z >⊆
AB ⊆ Q. Thus ab ∈ Q ∩ M, a contradiction. Hence Q is a prime ideal. Now
P (I) ⊆ Q ⊆ N\M ⊆ P. By the minimality of P we have Q = N\M = P.
Since M is a multiplicative semigroup, P is a completely prime ideal.

Conversely assume that every minimal prime ideal of N containing I is
completely prime. Clearly P (N/I) ⊆ N(N/I). Let x + I ∈ N(N/I). Then
xn ∈ I for some positive integer n. Let P + I be a minimal prime ideal in N/I.
Then P is a minimal prime ideal of N containing I and hence x ∈ P. Thus
x + I ∈ Pm(N/I) which is the intersection of all minimal prime ideals in N/I.
Since the intersection of all minimal prime ideals in N/I coincides with the
intersection of all prime ideals in N/I, x + I ∈ P (N/I). Hence I is 2-primal.
�

Theorem 6. Given an ideal I of a near-ring N the following conditions are
equivalent:

1. I is completely 2-primal;

2. I is 2-primal and Pc(I) is completely prime;

3. Every minimal prime ideal of N containing I and Pc(I) are both com-
pletely prime;

4. C(P (I)) = N\P (I);

5. N(P ) = NP = NP = P (I) for any minimal prime ideal P of N contain-
ing I;

6. N(P ) = NP = NP = P (I) for any minimal completely prime ideal P of
N containing I.

Proof. (1) ⇒ (2) Clearly, I is 2-primal. Therefore P (I) = Pc(I). Since I is
completely 2-primal, P (I) is completely prime and hence Pc(I) is completely
prime.

(2) ⇒ (1) Since I is 2-primal, P (I) is completely prime. Therefore I is
completely 2-primal.

(2) ⇒ (3) Since I is 2-primal by Theorem 5, every minimal prime ideal of
N containing I is completely prime.

(3) ⇒ (2) Again using Theorem 5, we have I is 2-primal.
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(1) ⇔ (4) is a restatement of the definition.
(1) ⇒ (5) Let P be a minimal prime ideal of N containing I. Clearly

N(P ) ⊆ NP ⊆ NP . Let a ∈ NP . Then anb ∈ P (I) for some b ∈ N\P
and for a positive integer n. Since P (I) is completely prime a ∈ P (I). Thus
a ∈ N(P ). Hence N(P ) = NP = NP . By Theorem 4, N(P ) = P. Since P (I)
is completely prime, P (I) is the unique minimal prime ideal of N containing
I and thus N(P ) = NP = NP = P (I).

(5) ⇒ (6) Let a + I ∈ N(N/I). Then an ∈ I, for some positive integer n.
Thus a ∈ NP = NP = N(P ) = P (I) for any minimal prime ideal P of N con-
taining I. Hence I is 2-primal. So every minimal prime ideal of N containing
I is completely prime by Theorem 5. Thus every minimal completely prime
ideal of N containing I is a minimal prime ideal of N containing I.

(6) ⇒ (1) Let P be a minimal completely prime ideal of N containing I.
Hence I is 2-primal and so any minimal completely prime ideal containing I is
a minimal prime ideal containing I by [Theorem, 5]. So P is a minimal prime
ideal of N containing I and N(P ) = P. Hence we have P = N(P ) = NP =
NP = P (I) proving that I is completely 2-primal. �

Corollary 7 (4, Proposition 1). Given a ring R the following conditions are
equivalent:

1. R is completely 2-primal;

2. R is 2-primal and Pc(R) is completely prime;

3. Every minimal prime ideal of R and Pc(R) are both completely prime;

4. C(P (R)) = R\P (R);

5. N(P ) = NP = NP = P (R) for any minimal prime ideal P of R;

6. N(P ) = NP = NP = P (R) for any minimal completely prime ideal P of
R. �

Theorem 8. Let I be an ideal of a near-ring N . Then the following are
equivalent:

1. I is completely 2-primal.

2. P (I) is a left and right symmetric ideal of N and P (I) is prime.
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3. xy ∈ P (I) implies yNx ⊆ P (I) for every x, y ∈ N and P (I) is prime.

4. xy ∈ P (I) implies yx ∈ P (I) for every x, y ∈ N and P (I) is prime.

5. P (I) has the strong IFP and P (I) is prime.

6. x1x2x3 . . . xn ∈ P (I) implies < x1 >< x2 >< x3 > . . . < xn >⊆ P (I)
for all x1, x2, x3, . . . , xn ∈ N and P (I) is prime.

7. P (I) is a semi-symmetric ideal of N and P (I) is prime.

Proof. (1) ⇒ (2) Clearly, P (I) is prime. If xyz ∈ P (I), then (zxy)2 =
zxyzxy ∈ P (I) and so zxy ∈ P (I). This implies that (xyxz)2 ∈ P (I). Thus
xyxz ∈ P (I) and (yxzyx)2 ∈ P (I) and hence yxzyx ∈ P (I). Therefore
(xzy)3 ∈ P (I) and so xzy ∈ P (I). Moreover xzy ∈ P (I) implies (yxz)2 ∈ P (I)
and so yxz ∈ P (I). Therefore P (I) is left and right symmetric.

(2) ⇒ (3) Let xy ∈ P (I). Since N has an identity, we have yx ∈ P (I). Let
n ∈ N. Now nyx ∈ P (I). Since P (I) is left symmetric ynx ∈ P (I). Therefore
yNx ⊆ P (I).

(3) ⇒ (4) is obvious.

(4) ⇒ (5) If xy ∈ P (I) then by Lemma 3, < x > y ⊆ P (I). Hence
y < x >⊆ P (I). Again by Lemma 3, < y >< x >⊆ P (I). Hence < x ><
y >⊆ P (I) and so < x > N < y >⊆< x >< y >⊆ P (I).

(5) ⇒ (6) Let a2 ∈ P (I). Since P (I) has the strong IFP and N has identity,
we have < a >2⊆ P (I). Since P (I) is prime < a >⊆ P (I) and so a ∈ P (I). If
xy ∈ P (I) then (yx)2 = yxyx ∈ P (I) and so yx ∈ P (I). Assume x1x2 . . . xn ∈
P (I). Then x1 ∈ (P (I) : x2x3 . . . xn). Hence by Lemma 3, < x1 >⊆ (P (I) :
x2x3 . . . xn) and < x1 > x2x3 . . . xn ⊆ P (I). Hence x2x3 . . . xn < x1 >⊆ P (I)
and x2 ∈ (P (I) : x3 . . . xn < x1 >). So < x2 >∈ (P (I) : x3 . . . xn < x1 >)
and < x2 > x3 . . . xn < x1 >⊆ P (I). Hence x3 . . . xn < x1 >< x2 >⊆ P (I).
Proceeding in this manner, we get that < x1 >< x2 > . . . < xn >⊆ P (I).

(6) ⇒ (7)is obvious.

(7) ⇒ (6) Let ab ∈ P (I). Then (ba)2 = baba ∈ P (I). Hence < ba >2⊆ P (I).
Since P (I) is prime < ba >⊆ P (I) and hence ba ∈ P (I). Thus x1x2x3 . . . xn ∈
P (I) implies < x1 >< x2 >< x3 > . . . < xn >⊆ P (I).

(6) ⇒ (1) Let ab ∈ P (I). Then < a >< b >⊆ P (I). Since P (I) is prime,
< a >⊆ P (I) or < b >⊆ P (I). Hence a ∈ P (I) or b ∈ P (I), showing that I is
completely 2-primal. �
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Definition 9. A near-ring N is said to be strongly completely 2-primal if N
is completely 2-primal and it has only one non zero idempotent.

Note: The notion of strongly completely 2-primal and completely 2-primal
coincide in rings.

Completely 2-primal near-rings need not be strongly completely 2-primal
as the following example shows.

Example 10. Let N = {0, a, b, c} be the Klein’s four group. Define multi-
plication in N as follows.

. 0 a b c
0 0 0 0 0
a 0 0 0 a
b 0 a b b
c 0 a b c

Then (N, +, .) is a near-ring (see Pilz [6, p. 408] scheme 8). N is completely
2-primal and has two nonzero idempotents, b and c.

Theorem 11. N is strongly completely 2-primal and regular if and only if N
is a near-field.

Proof. Assume that N is strongly completely 2-primal and regular. Let
a ∈ N. Then there exists x ∈ N such that a = axa. Clearly xa and ax are
nonzero idempotents and therefore xa = ax = 1, showing that N is a near-
field. The converse is obvious. �

Corollary 12. Let R be a ring. Then R is completely 2-primal and regular if
and only if R is a division ring.

Note: The above corollary will fail for near-rings as the following example
shows.

Example 13. Let N = {0, a, b, c} be the Klein’s four group. Define multi-
plication in N as follows.

. 0 a b c
0 0 0 0 0
a 0 a a a
b 0 b b b
c 0 c c c
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Then (N, +, .) is a near-ring (see Pilz [6, p. 408] scheme 1). N is completely
2-primal and regular. But N is not a near-field.

Theorem 14. N is completely 2-primal if and only if P (N) is both prime and
2-primal

Proof. Assume that N is completely 2-primal. Then P (N) is completely
prime and hence P (N) is prime. Now let us show that P (N) is 2-primal. Now
P (P (N)) = P (N) is completely semiprime. Hence P (N) is 2-primal, by [2,
Lemma 2.2(v)].

Conversely assume that P (N) is both prime and 2-primal. Let x2 ∈ P (N).
Then x ∈ P (N), by [2, Lemma 2.2(ii)]. Hence P (N) is completely semiprime.
Let xy ∈ P (N). Then x ∈ (P (N) : y). Since P (N) is completely semiprime,
(P (N) : y) is an ideal and hence < x >⊆ (P (N) : y). Then < x > y ⊆ P (N).
Now y < x >⊆ P (N) and hence y ∈ (P (N) :< x >). Thus < y >< x >⊆
P (N). Since P (N) is prime x ∈ P (N) or y ∈ P (N), showing that N is
completely 2-primal. �
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