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Abstract

The authors introduce and study a unified class of TH(α, β, n) of
starlike and convex functions of order α in the open unit disk. A num-
ber of results obtained which include the coefficient estimates, sharp
distortion theorems, and modified Hadamard products of functions be-
longing to the class TH(α, β, n).
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1. Introduction

Denote by H the class of functions f = h+ ḡ that are harmonic univalent and
sense-preserving in the unit disk ∆ = {z : |z| < 1} for which h(0) = f(0) =
fz(0)− 1 = 0. Then for f = h+ ḡ ∈ H we may express the analytic functions
h and g as

h(z) = z +
∞∑
n=2

anz
n, g(z) =

∞∑
n=1

bnz
n. (1)

Note that if the co-analytic part of f that is g is zero, then H reduces to
the class of normalised analytic univalent functions. For 0 ≤ α < 1 we let
SH(α) denote the subclass of H consisting of harmonic starlike functions of
order α. A function f of the form (1) is said to be harmonic starlike of order
α, for |z| = r < 1 (see Sheil-Small [[4],p.244]) if

∂

∂θ
(argf(reiθ)) ≥ α.

Further denote by T ∗H(α) the subclass of SH(α) such that h and g in f = h+ ḡ
are of the form

h(z) = z −
∞∑
n=2

anz
n, g(z) =

∞∑
n=1

bnz
n. (2)

Recently, Jahangiri[1] defined the class T ∗H(α) of the form (2) which satisfies
the condition

Re

(
zh′(z)− ¯zg′(z)

h(z) + ¯g(z)

)
> α, (0 ≤ α < 1). (3)

Also, Jahangiri [1] proved that if f = h+ ḡ given by (1) and if

∞∑
n=1

(
n− α
1− α

|an|+
n+ α

1− α
|bn|

)
≤ 2, 0 ≤ α < 1, a1 = 1, (4)

then f is harmonic, univalent and starlike of order α in ∆. This is proved
to be also necessary if f ∈ T ∗H(α). In fact, an interesting recent work on
harmonic close-to-convex functions has seen in [3], which was associated with
the Alexander integral transform.
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2. Coefficient Inequality

Our main tool in this paper is the following result given by Jahangiri[1] as
mentioned above.

Lemma 2.1. Let the function f = h + ḡ be given by (2). Then f ∈ T ∗H(α) if
and only if

∞∑
n=1

(
n− α
1− α

|an|+
n+ α

1− α
|bn|

)
≤ 2, (5)

where 0 ≤ α < 1 and a1 = 1.
Next, by observing that

f ∈ CH(α)⇔ zf ′(z) ∈ T ∗H(α), (6)

we gain the following Lemma 2.2.

Lemma 2.2.[2] Let the function f = h + ḡ be given by (2). Then f ∈ CH(α)
if and only if

∞∑
n=1

(
n(n− α)

1− α
|an|+

n(n+ α)

1− α
|bn|

)
≤ 2, (7)

where 0 ≤ α < 1 and a1 = 1.
In view of Lemma 2.1 and Lemma 2.2, the unification of the classes T ∗H(α)

and CH(α) arises naturally and so a new class TH(α, β, n) is introduced. Thus
we say that a function f defined by (2) belongs to TH(α, β, n) if and only if,

∞∑
n=1

[(1− β + nβ)(n− α)|an|+ (1− β + nβ)(n+ α)|bn|] ≤ 2(1− α), (8)

Clearly, we obtain

TH(α, β, n) = (1− β)T ∗H(α) + βCH(α),

so that
TH(α, 0, n) = T ∗H(α),

and
TH(α, 1, n) = CH(α).
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3. Growth and Distortion Theorem

A distortion property for function f in the class TH(α, β, n) is given as follows:

Theorem 3.1. Let the function f defined by (2) be in the class TH(α, β, n),
|z| = r < 1, then

|f(z)| ≤ (1 + |b1|)r +

(
1− α

(1 + β)(2− α)
− 1 + α

(1 + β)(2− α)

)
r2 (9)

and

|f(z)| ≥ (1− |b1|)r −

(
1− α

(1 + β)(2− α)
− 1 + α

(1 + β)(2− α)

)
r2. (10)

The bounds in (9) and (10) are attained for the functions f given by

f(z) = (1 + |b1|)z̄ +

(
1− α

(1 + β)(2− α)
− 1 + α

(1 + β)(2− α)

)
z̄2

and

f(z) = (1− |b1|)z −

(
1− α

(1 + β)(2− α)
− 1 + α

(1 + β)(2− α)

)
z2

for |b1| ≤ 1−α
1+α

.
Proof.
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Let f ∈ TH(α, β, n). Taking the absolute value of f we obtain

|f(z)| ≤ (1 + |b1|)r +
∞∑
n=2

(|an|+ |bn|)rn

≤ (1 + |b1|)r +
∞∑
n=2

(|an|+ |bn|)r2,

= (1 + |b1|)r +
1− α

(1 + β)(2− α)

∞∑
n=2

(1 + β)(
2− α
1− α

|an|+
2− α
1− α

|bn|)r2,

≤ (1 + |b1|)r +
1− α

(1 + β)(2− α)

∞∑
n=2

(1− β + nβ)(
n− α
1− α

|an|+
n+ α

1− α
|bn|)r2,

≤ (1 + |b1|)r +
1− α

(1 + β)(2− α)

(
1− 1 + α

1− α
|b1|
)
r2, |z| = r < 1,

which proves the assertion (9) of Theorem 3.1. Similarly, the assertion (10) of
Theorem 3.1 holds.

Further, we obtain the following and omit the proofs:

Theorem 3.2. Let the function f defined by (2) be in the class TH(α, β, n),
|z| = r < 1, then

|f ′(z)| ≤ 1 + |b1|+ 2

(
1− α

(1 + β)(2− α)
− 1 + α

(1 + β)(2− α)

)
r (11)

and

|f(z)| ≥ 1− |b1| − 2

(
1− α

(1 + β)(2− α)
− 1 + α

(1 + β)(2− α)

)
r. (12)

The results are sharp.

4. Convolution Properties

Let the function hm defined by

hm(z) = z −
∞∑
n=2

|an,m|zn +
∞∑
n=1

|bn,m|z̄n, (13)
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with m = (1, 2) and be in the class TH(α, β, n), we denote by (h1 ∗ h2)(z) the
convolution (or Hadamard Product) of the function h1(z) and h2(z), that is,

(h1 ∗ h2)(z) := z −
∞∑
n=2

|an,1||an,2|zn +
∞∑
n=1

|bn,1||bn,2|z̄n. (14)

We first show that the class TH(α, β, n) is closed under convolution.

Theorem 4.1 For 0 ≤ γ ≤ α < 1, let the functions h1 ∈ TH(α, β, n) and
h2 ∈ TH(γ, β, n). Then

(h1 ∗ h2)(z) ∈ TH(α, β, n) ∈ TH(γ, β, n).

Proof.
Let h1 = z −

∑∞
n=2 |an,1|zn +

∑∞
n=1 |bn,1|z̄n be in TH(α, β, n) and h2 = z −∑∞

n=2 |an,2|zn +
∑∞

n=1 |bn,2|z̄n be in TH(γ, β, n). Then the convolution h1 ∗ h2

is given by (14). We wish to show that the coefficients of h1 ∗ h2 satisfy the
required condition given in (8). For h2 ∈ TH(γ, β, n), we note that |an,2| < 1
and |bn,2| < 1. Now for the convolution functions h1 ∗ h2 we obtain

∞∑
n=2

(1− β + nβ)
(n− γ)

1− γ
|an,1||an,2|+

∞∑
n=1

(1− β + nβ)
(n+ γ)

1− γ
|bn,1||bn,2|

≤
∞∑
n=2

(1− β + nβ)
(n− γ)

1− γ
|an,1|+

∞∑
n=1

(1− β + nβ)
(n+ γ)

1− γ
|bn,1|

≤
∞∑
n=2

(1− β + nβ)
(n− α)

1− α
|an,1|+

∞∑
n=1

(1− β + nβ)
(n+ α)

1− α
|bn,1| ≤ 1

since 0 ≤ γ ≤ α < 1 and h1 ∈ TH(α, β, n). Thus, h1 ∗ h2 ∈ TH(α, β, n) ⊂
TH(γ, β, n).

Next we show that TH(α, β, n) is closed under convex combinations of its mem-
bers.

Theorem 4.2 The class TH(α, β, n) is closed under convex combination.
Proof.
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For i = 1, 2, 3 · · · , let hi ∈ TH(α, β, n), where hi is given by hi(z) = z −∑∞
n=2 |an,i|zn +

∑∞
n=1 |bn,i|z̄n. Then by (8)

∞∑
n=1

(1− β + nβ)[
n− α
1− α

|an,i|+
n+ α

1− α
|bn,i|] ≤ 2. (15)

For
∑∞

i=1 ti = 1, 0 ≤ ti ≤ 1, the convex combination of hi shall be written as

∞∑
i=1

tihi(z) = z −
∞∑
n=2

(
∞∑
i=1

tian,i)z
n +

∞∑
n=1

(
∞∑
i=1

tibn,i)z̄
n. (16)

Then by (15),

∞∑
n=1

(1− β + nβ)[
n− α
1− α

∞∑
i=1

tian,i +
n+ α

1− α

∞∑
i=1

tibn,i]

=
∞∑
i=1

ti

[
∞∑
n=1

(1− β + nβ)

(
n− α
1− α

an,i +
n+ α

1− α
bn,i

)]

≤ 2
∞∑
i=1

ti = 2.

Therefore
∑∞

i=1 tihi(z) ∈ TH(α, β, n).
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