Unified Treatment for Harmonic Univalent Functions *

S. B. Joshi †

Department of Mathematics, Walchand College of Engineering Sangli, Maharashtra, India 416 415

and

M. Darus ‡

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600 Selangor, Malaysia

Received January 23, 2007, Accepted February 26, 2007.

Abstract

The authors introduce and study a unified class of $\mathcal{T}_{\mathcal{H}}(\alpha,\beta,n)$ of starlike and convex functions of order α in the open unit disk. A number of results obtained which include the coefficient estimates, sharp distortion theorems, and modified Hadamard products of functions belonging to the class $\mathcal{T}_{\mathcal{H}}(\alpha,\beta,n)$.

Keywords and Phrases: Coefficient estimates, Harmonic functions, Modified Hadamard products.

[†]E-mail: joshisb@hotmail.com

^{*}AMS Subject Classification (2000): 30C45.

[‡]E-mail: maslina@pkrisc.cc.ukm.my

1. Introduction

Denote by \mathcal{H} the class of functions $f = h + \bar{g}$ that are harmonic univalent and sense-preserving in the unit disk $\Delta = \{z : |z| < 1\}$ for which $h(0) = f(0) = f_z(0) - 1 = 0$. Then for $f = h + \bar{g} \in \mathcal{H}$ we may express the analytic functions h and g as

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad g(z) = \sum_{n=1}^{\infty} b_n z^n.$$
 (1)

Note that if the co-analytic part of f that is g is zero, then \mathcal{H} reduces to the class of normalised analytic univalent functions. For $0 \leq \alpha < 1$ we let $\mathcal{S}_{\mathcal{H}}(\alpha)$ denote the subclass of \mathcal{H} consisting of harmonic starlike functions of order α . A function f of the form (1) is said to be harmonic starlike of order α , for |z| = r < 1 (see Sheil-Small [[4],p.244]) if

$$\frac{\partial}{\partial \theta} (argf(re^{i\theta})) \ge \alpha.$$

Further denote by $\mathcal{T}^*_{\mathcal{H}}(\alpha)$ the subclass of $\mathcal{S}_{\mathcal{H}}(\alpha)$ such that h and g in $f = h + \bar{g}$ are of the form

$$h(z) = z - \sum_{n=2}^{\infty} a_n z^n, \quad g(z) = \sum_{n=1}^{\infty} b_n z^n.$$
 (2)

Recently, Jahangiri[1] defined the class $\mathcal{T}^*_{\mathcal{H}}(\alpha)$ of the form (2) which satisfies the condition

$$Re\left(\frac{zh'(z) - zg\bar{(z)}}{h(z) + g\bar{(z)}}\right) > \alpha, (0 \le \alpha < 1).$$
(3)

Also, Jahangiri [1] proved that if $f = h + \bar{g}$ given by (1) and if

$$\sum_{n=1}^{\infty} \left(\frac{n-\alpha}{1-\alpha} |a_n| + \frac{n+\alpha}{1-\alpha} |b_n| \right) \le 2, 0 \le \alpha < 1, a_1 = 1, \tag{4}$$

then f is harmonic, univalent and starlike of order α in Δ . This is proved to be also necessary if $f \in \mathcal{T}^*_{\mathcal{H}}(\alpha)$. In fact, an interesting recent work on harmonic close-to-convex functions has seen in [3], which was associated with the Alexander integral transform.

2. Coefficient Inequality

Our main tool in this paper is the following result given by Jahangiri[1] as mentioned above.

Lemma 2.1. Let the function $f = h + \overline{g}$ be given by (2). Then $f \in \mathcal{T}^*_{\mathcal{H}}(\alpha)$ if and only if

$$\sum_{n=1}^{\infty} \left(\frac{n-\alpha}{1-\alpha} |a_n| + \frac{n+\alpha}{1-\alpha} |b_n| \right) \le 2,$$
(5)

where $0 \leq \alpha < 1$ and $a_1 = 1$.

Next, by observing that

$$f \in \mathcal{C}_{\mathcal{H}}(\alpha) \Leftrightarrow zf'(z) \in \mathcal{T}^*_{\mathcal{H}}(\alpha),$$
 (6)

we gain the following Lemma 2.2.

Lemma 2.2.[2] Let the function $f = h + \overline{g}$ be given by (2). Then $f \in C_{\mathcal{H}}(\alpha)$ if and only if

$$\sum_{n=1}^{\infty} \left(\frac{n(n-\alpha)}{1-\alpha} |a_n| + \frac{n(n+\alpha)}{1-\alpha} |b_n| \right) \le 2, \tag{7}$$

where $0 \leq \alpha < 1$ and $a_1 = 1$.

In view of Lemma 2.1 and Lemma 2.2, the unification of the classes $\mathcal{T}^*_{\mathcal{H}}(\alpha)$ and $\mathcal{C}_{\mathcal{H}}(\alpha)$ arises naturally and so a new class $\mathcal{T}_{\mathcal{H}}(\alpha, \beta, n)$ is introduced. Thus we say that a function f defined by (2) belongs to $\mathcal{T}_{\mathcal{H}}(\alpha, \beta, n)$ if and only if,

$$\sum_{n=1}^{\infty} [(1-\beta+n\beta)(n-\alpha)|a_n| + (1-\beta+n\beta)(n+\alpha)|b_n|] \le 2(1-\alpha), \quad (8)$$

Clearly, we obtain

$$\mathcal{T}_{\mathcal{H}}(\alpha,\beta,n) = (1-\beta)\mathcal{T}_{\mathcal{H}}^*(\alpha) + \beta \mathcal{C}_{\mathcal{H}}(\alpha),$$

so that

$$\mathcal{T}_{\mathcal{H}}(\alpha, 0, n) = \mathcal{T}_{\mathcal{H}}^*(\alpha),$$

and

$$\mathcal{T}_{\mathcal{H}}(\alpha, 1, n) = \mathcal{C}_{\mathcal{H}}(\alpha).$$

3. Growth and Distortion Theorem

A distortion property for function f in the class $\mathcal{T}_{\mathcal{H}}(\alpha, \beta, n)$ is given as follows:

Theorem 3.1. Let the function f defined by (2) be in the class $\mathcal{T}_{\mathcal{H}}(\alpha, \beta, n)$, |z| = r < 1, then

$$|f(z)| \le (1+|b_1|)r + \left(\frac{1-\alpha}{(1+\beta)(2-\alpha)} - \frac{1+\alpha}{(1+\beta)(2-\alpha)}\right)r^2$$
(9)

and

$$|f(z)| \ge (1 - |b_1|)r - \left(\frac{1 - \alpha}{(1 + \beta)(2 - \alpha)} - \frac{1 + \alpha}{(1 + \beta)(2 - \alpha)}\right)r^2.$$
(10)

The bounds in (9) and (10) are attained for the functions f given by

$$f(z) = (1+|b_1|)\bar{z} + \left(\frac{1-\alpha}{(1+\beta)(2-\alpha)} - \frac{1+\alpha}{(1+\beta)(2-\alpha)}\right)\bar{z}^2$$

and

$$f(z) = (1 - |b_1|)z - \left(\frac{1 - \alpha}{(1 + \beta)(2 - \alpha)} - \frac{1 + \alpha}{(1 + \beta)(2 - \alpha)}\right)z^2$$

for $|b_1| \leq \frac{1-\alpha}{1+\alpha}$. **Proof.**

228

Let $f \in \mathcal{T}_{\mathcal{H}}(\alpha, \beta, n)$. Taking the absolute value of f we obtain

$$\begin{aligned} |f(z)| &\leq (1+|b_1|)r + \sum_{n=2}^{\infty} (|a_n|+|b_n|)r^n \\ &\leq (1+|b_1|)r + \sum_{n=2}^{\infty} (|a_n|+|b_n|)r^2, \\ &= (1+|b_1|)r + \frac{1-\alpha}{(1+\beta)(2-\alpha)} \sum_{n=2}^{\infty} (1+\beta)(\frac{2-\alpha}{1-\alpha}|a_n| + \frac{2-\alpha}{1-\alpha}|b_n|)r^2, \\ &\leq (1+|b_1|)r + \frac{1-\alpha}{(1+\beta)(2-\alpha)} \sum_{n=2}^{\infty} (1-\beta+n\beta)(\frac{n-\alpha}{1-\alpha}|a_n| + \frac{n+\alpha}{1-\alpha}|b_n|)r^2, \\ &\leq (1+|b_1|)r + \frac{1-\alpha}{(1+\beta)(2-\alpha)} \left(1 - \frac{1+\alpha}{1-\alpha}|b_1|\right)r^2, \qquad |z| = r < 1, \end{aligned}$$

which proves the assertion (9) of Theorem 3.1. Similarly, the assertion (10) of Theorem 3.1 holds.

Further, we obtain the following and omit the proofs:

Theorem 3.2. Let the function f defined by (2) be in the class $\mathcal{T}_{\mathcal{H}}(\alpha, \beta, n)$, |z| = r < 1, then

$$|f'(z)| \le 1 + |b_1| + 2\left(\frac{1-\alpha}{(1+\beta)(2-\alpha)} - \frac{1+\alpha}{(1+\beta)(2-\alpha)}\right)r$$
(11)

and

$$|f(z)| \ge 1 - |b_1| - 2\left(\frac{1 - \alpha}{(1 + \beta)(2 - \alpha)} - \frac{1 + \alpha}{(1 + \beta)(2 - \alpha)}\right)r.$$
 (12)

The results are sharp.

4. Convolution Properties

Let the function h_m defined by

$$h_m(z) = z - \sum_{n=2}^{\infty} |a_{n,m}| z^n + \sum_{n=1}^{\infty} |b_{n,m}| \bar{z}^n,$$
(13)

with m = (1, 2) and be in the class $\mathcal{T}_{\mathcal{H}}(\alpha, \beta, n)$, we denote by $(h_1 * h_2)(z)$ the convolution (or Hadamard Product) of the function $h_1(z)$ and $h_2(z)$, that is,

$$(h_1 * h_2)(z) := z - \sum_{n=2}^{\infty} |a_{n,1}| |a_{n,2}| z^n + \sum_{n=1}^{\infty} |b_{n,1}| |b_{n,2}| \bar{z}^n.$$
(14)

We first show that the class $\mathcal{T}_{\mathcal{H}}(\alpha, \beta, n)$ is closed under convolution.

Theorem 4.1 For $0 \leq \gamma \leq \alpha < 1$, let the functions $h_1 \in \mathcal{T}_{\mathcal{H}}(\alpha, \beta, n)$ and $h_2 \in \mathcal{T}_{\mathcal{H}}(\gamma, \beta, n)$. Then

$$(h_1 * h_2)(z) \in \mathcal{T}_{\mathcal{H}}(\alpha, \beta, n) \in \mathcal{T}_{\mathcal{H}}(\gamma, \beta, n)$$

Proof.

Let $h_1 = z - \sum_{n=2}^{\infty} |a_{n,1}| z^n + \sum_{n=1}^{\infty} |b_{n,1}| \bar{z}^n$ be in $\mathcal{T}_{\mathcal{H}}(\alpha, \beta, n)$ and $h_2 = z - \sum_{n=2}^{\infty} |a_{n,2}| z^n + \sum_{n=1}^{\infty} |b_{n,2}| \bar{z}^n$ be in $\mathcal{T}_{\mathcal{H}}(\gamma, \beta, n)$. Then the convolution $h_1 * h_2$ is given by (14). We wish to show that the coefficients of $h_1 * h_2$ satisfy the required condition given in (8). For $h_2 \in \mathcal{T}_{\mathcal{H}}(\gamma, \beta, n)$, we note that $|a_{n,2}| < 1$ and $|b_{n,2}| < 1$. Now for the convolution functions $h_1 * h_2$ we obtain

$$\sum_{n=2}^{\infty} (1-\beta+n\beta) \frac{(n-\gamma)}{1-\gamma} |a_{n,1}| |a_{n,2}| + \sum_{n=1}^{\infty} (1-\beta+n\beta) \frac{(n+\gamma)}{1-\gamma} |b_{n,1}| |b_{n,2}|$$

$$\leq \sum_{n=2}^{\infty} (1-\beta+n\beta) \frac{(n-\gamma)}{1-\gamma} |a_{n,1}| + \sum_{n=1}^{\infty} (1-\beta+n\beta) \frac{(n+\gamma)}{1-\gamma} |b_{n,1}|$$

$$\leq \sum_{n=2}^{\infty} (1-\beta+n\beta) \frac{(n-\alpha)}{1-\alpha} |a_{n,1}| + \sum_{n=1}^{\infty} (1-\beta+n\beta) \frac{(n+\alpha)}{1-\alpha} |b_{n,1}| \leq 1$$

since $0 \leq \gamma \leq \alpha < 1$ and $h_1 \in \mathcal{T}_{\mathcal{H}}(\alpha, \beta, n)$. Thus, $h_1 * h_2 \in \mathcal{T}_{\mathcal{H}}(\alpha, \beta, n) \subset \mathcal{T}_{\mathcal{H}}(\gamma, \beta, n)$.

Next we show that $\mathcal{T}_{\mathcal{H}}(\alpha, \beta, n)$ is closed under convex combinations of its members.

Theorem 4.2 The class $\mathcal{T}_{\mathcal{H}}(\alpha, \beta, n)$ is closed under convex combination. **Proof.** For $i = 1, 2, 3 \cdots$, let $h_i \in \mathcal{T}_{\mathcal{H}}(\alpha, \beta, n)$, where h_i is given by $h_i(z) = z - \sum_{n=2}^{\infty} |a_{n,i}| z^n + \sum_{n=1}^{\infty} |b_{n,i}| \overline{z}^n$. Then by (8)

$$\sum_{n=1}^{\infty} (1 - \beta + n\beta) \left[\frac{n - \alpha}{1 - \alpha} |a_{n,i}| + \frac{n + \alpha}{1 - \alpha} |b_{n,i}| \right] \le 2.$$
 (15)

For $\sum_{i=1}^{\infty} t_i = 1, \ 0 \le t_i \le 1$, the convex combination of h_i shall be written as

$$\sum_{i=1}^{\infty} t_i h_i(z) = z - \sum_{n=2}^{\infty} (\sum_{i=1}^{\infty} t_i a_{n,i}) z^n + \sum_{n=1}^{\infty} (\sum_{i=1}^{\infty} t_i b_{n,i}) \bar{z}^n.$$
(16)

Then by (15),

$$\sum_{n=1}^{\infty} (1-\beta+n\beta) \left[\frac{n-\alpha}{1-\alpha} \sum_{i=1}^{\infty} t_i a_{n,i} + \frac{n+\alpha}{1-\alpha} \sum_{i=1}^{\infty} t_i b_{n,i}\right]$$
$$= \sum_{i=1}^{\infty} t_i \left[\sum_{n=1}^{\infty} (1-\beta+n\beta) \left(\frac{n-\alpha}{1-\alpha} a_{n,i} + \frac{n+\alpha}{1-\alpha} b_{n,i}\right) \right]$$
$$\leq 2\sum_{i=1}^{\infty} t_i = 2.$$

Therefore $\sum_{i=1}^{\infty} t_i h_i(z) \in \mathcal{T}_{\mathcal{H}}(\alpha, \beta, n).$

Acknowledgement

The work presented here was supported by IRPA 09-02-02-10029 EAR. We also would like to thank Professor H.M. Srivastava for some suggestions and improvement of the paper.

References

 J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl. 235 (1999), 470-477.

- [2] J. M. Jahangiri, Coefficient bounds and univalence criteria for harmonic functions with negative coefficients, Anna Univ Marie Curie-Sklo LII (1998), 57-66.
- [3] J. M. Jahangiri, Y. C. Kim, and H. M. Srivastava, Construction of a certain class of harmonic close-to-convex functions associated with the Alexander integral transform, *Integral Transform. Spec. Funct.* 14 (2003), 237-242.
- [4] T. Sheil-Small, Constant for planar harmonic mappings, J. London Math. Soc. 2(42) (1990), 237-248.