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Abstract In the present paper we established the relations between growth 
parameters order and type in terms of coefficients occurring in generalized Faber 
series expansions of entire function and corresponding best linear approximation 
errors in supnorm in doubly connected domains.
Keywords: Generalized Faber series, best linear approximation errors, order and 
type, doubly connected domains and entire functions.

1 Introduction

Let K be a continuum (not a point) on the complex plane C that does not

separate the plane and let Ω be an arbitrary domain containing K such that its

boundary consists of at least three points. Let UR denote a disk of radius R with

boundary TR, and U denotes the unit disk with boundary T . If Ω is a canonical

neighborhood GR of K then the boundary ∂GR coincides with the preimage of the

circle TR under the conformal mapping of the C \K onto C \ U in the extended

complex plane. For K = U and K = [−1, 1] the Faber approximation coincides,

respectively, with Taylor and Chebyshev approximations. For a wide class of

continua K, when K is a compact convex set, it is possible by approximating

functions by the partial sums of the Faber series.

It has been noticed that in a number of cases the partial sums of the Faber series

are much easier to compute than the corresponding approximation polynomials

(see [1]). But polynomial expansions convergent on K become too sensitive with

respect to the placing of singular points: the Faber series of a function f diverges at
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any point z ∈ C\GR whenever some level line ΓR contains at least one singularity

of f . Also, the order of these convergence in the uniform metric on K depends on

the position of analyticity domains of f in the remaining part of C. So, if Ω is a

simply connected domain containing K, then an optimal basis for approximation

of functions analytic in Ω and continuous on Ω in the metric of C(K) will be a

fortiori not polynomial. These bases were constructed by V.D. Erokhin [3] as a

natural generalization of the Faber series as follows:

Let Ω\K is doubly connected domain E and H denote the conformal mapping

of E onto the ring {w : 1 < |w| < R}, R = mod(Ω \ K) ≤ +∞. The conformal

mapping of a doubly connected domain into a ring can always be equivalent to a

double conformal mapping of simply connected areas, at the same time one can

start with any of the two simply connected domains, defined by a given doubly

connected domain.

Given any two arbitrary numbered boundary continua E1 and E2 of a doubly

connected domain E, the conformal mapping H : E → {w : 1 < |w| < R} can be

represented as the composition H = F2oF1, where F1 is the conformal mapping of

the simply connected domain with boundary E1 and F2 is the conformal mapping

of the simply connected domain with boundary F1(E2). In the case E1 = ∂Ω and

E2 = ∂K, define F = F1 and Φ = F2 so that F2(∞) = ∞. Then

H(z) = Φ[F (z)], z ∈ E.

Denote ξ = H−1, φ = F−1, and ϕ = Φ−1, it gives

ξ(w) = φ[ϕ(w)], 1 < |w| < R.

Let H(Ω) be the space of functions analytic in Ω, equipped with the topology

of uniform convergence on arbitrary compact subsets of Ω. Setting Cρ = {z :

|H(z)| = ρ, 1 < ρ < R} and Ωρ = intCρ. Following the V.D. Erokhin [3], the

formulas

χ(w) =
1

2πi

∫
Tρ

f(ξ(τ))

τ − w
dτ, w ∈ Uρ, (1.1)

and

f(z) =
1

2πi

∫
Cρ

χ[H(ζ)]

F (ζ)− F (z)
F ′(ζ)dζ, z ∈ Ωρ (1.2)

are mutually inverse and establish a linear topological isomorphism in the space

H(UR) and H(Ω). Let en(z)(n = 1, 2, . . . , ) be the function defined by (1.2) with

χ(w) = wn. We find the isomorphic image χ ∈ H(UR) of an arbitrary function

f ∈ H(Ω) by (1.1), and then expand it into a Taylor series. Taking the inverse
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transformation by (1.2), we get the following expansion

f(z) =
∞∑

k=0

akek(z), z ∈ Ω, (1.3)

with coefficients

ak =
1

2πi

∫
Tρ

χ(w)

wk+1
dw =

1

2πi

∫
Tρ

f [ξ(w)]

wk+1
dw. (1.4)

Note. In the Faber case, where ∂Ω agree with the level line ΓR of the continuum

K and the mapping H extends to a conformal mapping of the entire domain C\Ω,

with F (z) = z the formula (1.2) defines the classical Faber operator.

Consider the weaker topology of functions corresponding to uniform conver-

gence on K i.e., to the form

‖f(z)‖ ≡ ‖f‖ = max
z∈K

|f(z)|

and using the formulas (1.1)-(1.4) V.D. Erokhin [3] obtained the following relations:

1. lim supk→∞(‖ak‖)
1
k ≤ 1.

2. lim supk→∞(‖ek‖)
1
k ≤ 1.

3. |ak| ≤ A(ρ) supz∈Ωρ
|f(z)|. 1

ρk (k = 0, 1, 2, . . . ), f ∈ H(Ωρ), 1 < ρ ≤ R, ΩR =

Ω.

4. supz∈Ωρ
|ek(z)| ≤ A(ρ)ρk where A(ρ) is a constant depending only on ρ, K

and Ω.

The main purpose of the studied bases is to derive from (1)-(4) the following

Bernstein theorem on the possibility of completely characterizing functions of the

class H(Ω) by the best approximations on the continuum K by linear forms of the

form (1.3).

We denote the partial sum of the nth order of series (1.3) by

pn(z) =
n∑

k=0

akek(z). (1.5)

For f ∈ H(Ω), set

En(f) = min
(ao,a1,...,an)

‖f(z)− pn(z)‖.
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Now we have the following theorem.

Theorem A. For the function f(z) ∈ H(Ω) it is necessary and sufficient that

lim sup
n→∞

(En(f))
1
n ≤ 1

R
. (1.6)

Proof. Let f ∈ H(Ω), then we have

En(f) ≤ ‖f(z)−
n∑

k=0

akek(z)‖ ≤
∞∑

k=n+1

|ak|‖ek‖

in view of (2) and (3), we get (1.6) immediately.

Conversely, let {p̃n(z) =
∑n

k=0 a
(n)
k ek(z)}∞n=0 be a sequence of forms satisfying

(1.5), so ‖f − p̃n‖ = εn(f). Then

‖ ˜pn+1 − p̃n‖ ≤ 2εn(f),

or

|a(n+1)
n+1 | ≤ 2εn(f)‖an+1‖, |a(n+1)

k − a
(n)
k | ≤ 2εn(f)‖ak‖, (k = 0, 1, . . . , n).

Using (1.6) with (1) and (2), we get

lim
n→∞

a
(n)
k = ak(k = 0, 1, . . . )

it gives

f(z) =
∞∑

k=0

akek(z), z ∈ Ω

where

lim sup
k→∞

(|ak|)
1
k ≤ 1

R
. (1.7)

Hence from (1.6),(1.7) and (4) we conclude that the series expansion (1.3) con-

verges uniformly and absolutely in Ωρ(1 < ρ < R) for f ∈ H(Ω). Hence the proof

is completed.

Now we derive the following relations between En(f) and ak which will be useful

in the sequel.

En(f) ≤ ‖f − pn‖ = ‖
∞∑

k=n+1

akek‖ ≤ K∗
∞∑

k=n+1

|ak| (1.8)
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where K∗ = mes(Ω).

|ak| =
1

2πi
|
∫
|w|=ρ

f [ξ(w)]− ˜pk−1(f, ξ(w))

wk+1
dw|

≤ 1

2πi

∫ 2π

0

|f [ξ(ρeit)]− ˜pk−1(f, ξ(ρeit)|ρ−kdt

≤ max
0≤t≤2π

|f [ξ(ρeit)]− ˜pk−1(f, ξ(ρeit)|ρ−k

= Ek−1(f)ρ−k.

We can write

z = ξ(w) = νw + νo +
ν1

w
+ · · ·+ νk

wk
, 1 < |w| < R,

max
|w|=ρ

|f [ξ(w)]| = max
|w|=ρ

|
f(w(ν + νo

w
+ · · ·+ νk

wk+1 ))

wk+1
|

= max
|z|=R

|f(z)|, z = w.ν, R = |w|.ν.

Therefore, we have

|ak| ≤ Ek−1(f)R−k for z ∈ Ω. (1.9)

Corollary 1.1. For the function f(z) ∈ H(Ω) to be entire it is necessary and

sufficient that

lim
k→∞

|ak|
1
k = 0.

Let M(R) = max|z|=R |f(z)| be the maximum modulus of f(z). The growth of

an entire function f(z) is measured in terms of its order η and type σ defined as

follows:

lim sup
R→∞

log log M(R)

log R
= η (1.10)

lim sup
R→∞

log M(R)

Rη
= σ (1.11)

for 0 < η < ∞.

Kumar [6] studied growth properties of entire functions over Jordan domains

by using Faber polynomials. He characterized order and type in terms of Lp-

approximation errors, 2 ≤ p ≤ ∞ and improved the various results of Seremeta [8]

and Ganti and Srivastava [4]. Giroux [5] and Kumar and Vandna [7] characterized

order and type of entire/analytic functions in terms of approximation errors by
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using Faber polynomials in Jordan domains. To the best of our knowledge, coef-

ficients characterization of order and type of an entire function in terms of best

linear approximation errors in doubly connected domain have not been obtained

so far.

In the present paper, we have made an attempt to bridge this gap. First we

obtain coefficients characterization for order and type of an entire function over

doubly connected domain. Finally, we obtain necessary and sufficient conditions

of order and type of an entire function in terms of best linear approximation errors.

2 Main Results

Theorem 2.1. The function f is the restriction to doubly connected domain Ω

of an entire function of finite order η if and only if

µ = lim sup
k→∞

k log k

− log |ak|
(2.1)

is finite, and the order η of f is equal to µ.

Proof. Let f(z) =
∑∞

k=0 akek(z) be an entire function. Using (3) we have

|ak| ≤ A(R)M(R)R−k. (2.2)

First we prove that η ≥ µ. Let µ, ε > 0 be such that ε < µ < ∞. Then using (2.1)

we get

−(µ− ε) log |ak| ≤ k log k

or

log |ak| ≥ − 1

(µ− ε)
k log k

for a sequence of values of k →∞. Now in view of (2.2) we have

log M(R) ≥ log |ak|+ log(Rk)− log A(R)

≥ − 1

(µ− ε)
(k log k) + k log R− log A(R)

= k[(log R− 1

(µ− ε)
log k)−O(1)].
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The right hand side attains its maximum value at R = (ek)
1

(µ−ε)

 

So by substituting

this value of R in above inequality, we get

log M(R) ≥ k

(µ− ε)
− 0(1) =

R(µ−ε)

e(µ− ε)
.

or

η = lim sup
R→∞

log log M(R)

log R
≥ µ− ε.

Since ε is arbitrary, it gives

η ≥ µ. (2.3)

In order to prove reverse inequality in (2.3) we assume that

lim sup
k→∞

k log k

− log |ak|
= β < ∞.

Then for every ε > 0, there exists m(ε) such that for all k ≥ m, we have

|ak| ≤ C ′k−
k

(β+ε) .

Since f(z) =
∑∞

k=0 akek(z), we have

|f(z)| ≤ C ′k−
k

(β+ε) |ek(z)|.

Using (4), we get

|f(z)| ≤ C ′k−
k

(β+ε) A(ρ)ρk, z ∈ Ωρ.

Hence

M(R) ≤ C ′A(R)[
ko∑

k=0

k−
k

(β+ε) Rk +
∞∑

ko+1

k−
k

(β+ε) Rk].

Following the proof of Bose and Sharma [2, Thm.IV] we obtain

M(R) ≤ 0{e(2R)β+2ε}.

Proceeding to limits and using the arbitrariness of ε, we get

lim sup
R→∞

log log M(R)

log R
≤ β. (2.4)
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Combining (2.3) and (2.4) we get the required result (2.1).

Theorem 2.2. The function f is restriction to doubly connected domain Ω of

an entire function of finite order η and type σ if, and only if

α = eση (2.5)

where

α = lim sup
k→∞

{k(|ak|)
η
k }, 0 < α < ∞.

Proof. Let f be an entire function of finite order η and type σ. Then

|f(z)| ≤ e(σ+ε)Rη

, z ∈ Ω

and using (3), we have

|ak| ≤ A(R)e(σ+ε)Rη

R−k

for all R sufficiently large. The minimum value of right hand side of above in-

equality is attained at

R = [
k

η(σ + ε)
]
1
η .

It gives

|ak| ≤ A′[
eη(σ + ε)

k
]

k
η

or

k(|ak|)
η
k ≤ eη(σ + ε) + O(1).

Proceeding to limits, since ε is arbitrary, we get

lim sup
k→∞

k(|ak|)
η
k ≤ eησ. (2.6)

Conversely, let

lim sup
k→∞

k(|ak|)
η
k = α < ∞.

Then for given ε > 0 there exists N(ε) such that for all k ≥ N , we have

|ak| ≤ k−
k
η [eη(α + ε)]

k
η .
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Since f(z) =
∑∞

k=0 akek(z), therefore

|f(z)| ≤
∞∑

k=0

k−
k
η [eη(α + ε)]

k
η |ek(z)|.

Now applying (4) in above inequality, we obtain

|f(z)| ≤
∞∑

k=0

k−
k
η [eη(α + ε)]

k
η A(R)Rk, z ∈ Ω.

we estimate the right hand side of the above inequality proceeding on the limits

of proof of Bose and Sharma [2, Thm. V] and we get

|f(z)| ≤ o{e(α+ε)Rη}.

Hence

M(R) ≤ o{e(α+ε)Rη}

or

log M(R)

Rη
≤ α + ε.

Proceeding the limits, we get

lim sup
R→∞

log M(R)

Rη
≤ α. (2.7)

Combining (2.6) and (2.7), we get the required result.

Theorem 2.3. The function f is the restriction to doubly connected domain

Ω of an entire function of finite order η if, and only if

lim sup
k→∞

k log k

− log Ek(f)
= η.

Proof. Let f is an entire function having finite order η. Then by Theorem 2.1,

we have

|ak| ≤ C ′k−
k

(η+ε) .

Using (1.8), we have

En(f) ≤ K∗C ′
∞∑

k=n+1

k−
k

(η+ε) ≤ K∗C ′n−
n

(η+ε)
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for all sufficiently large n. Therefore, we get

− log En(f) ≥ n log n

(η + ε)
−O(1).

Since ε is arbitrary, proceeding the limits, we get

lim sup
n→∞

n log n

− log En(f)
≤ η. (2.8)

Conversely, let

lim sup
k→∞

k log k

− log Ek(f)
≤ α′.

Suppose α′ < ∞. Then for every ε > 0 there exists N(ε) such that for all k > N ,

we have

Ek(f) ≤ k
− k

(α′+ε) .

Using (1.9) we have

|ak| ≤ (k − 1)
− (k−1)

(α′+ε) R−k.

Hence

|f(z)| ≤ A
∞∑

k=0

k
− k

(α′+ε) A(R), , z ∈ Ω.

Now following the method used in Theorem 2.1 to estimate the right hand side,

we obtain

M(R) ≤ o{e(2A(R))(α
′+2ε)

}.

Proceeding the limits, we get

η = lim sup
R→∞

log log M(R)

log R
≤ α′. (2.9)

Combining (2.8) and (2.9) we get the required result.

Theorem 2.4. The function f is the restriction to doubly connected domain

Ω of an entire function of finite order η and type σ if, and only if

lim sup
k→∞

{k(Ek(f))
η
k } = eησ. (2.10)
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Proof. From Theorem 2.2, we have

|ak| ≤ A′[
eη(σ + ε)

k
]

k
η .

From (8) we get

En(f) ≤ K∗
∞∑

k=n+1

A′[
eη(σ + ε)

k
]

k
η ≤ K∗A′[

eη(σ + ε)

k
]

n
η

or

lim sup
n→∞

n(En(f))
η
n ≤ eησ.

The converse part can be proved similarly following on the lines of Theorem 2.2

by using (9). This completes the proof of Theorem 2.4.
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