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Abstract. In this paper, basic notions of von Neumann algebra and its direct analogous in the
realm of groupoids and measure spaces have been considered. By recovering the action of a
locally compact Lie group from a crossed product of a von Neumann algebra, other proof of one
of a geometric proposition of O’Neil and an extension of it has been proposed. Also, using the
advanced exploration of nilmanifolds in measure spaces and their corresponding automorphisms
(Lie algebraic derivations) a different proof of an analytic proposition of Gordon and Mao has
been attained. These two propositions are of the most important ones for rigidity problems of
Riemannian manifolds especially 2-step nilmanifolds.
AMS Subject Classification (2010): 53C24, 46L10, 46L40, 22F10.
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1. Introduction

Motivation. Let M is a simply connected 2-step nilpotent Lie group with a left invariant
metric and Γ is a cocompact discrete subgroup of isometries of M . In the literature, one of
the most important rigidity problems of geodesic flows for compact nilmanifolds is the following
problem:

Problem. Whether two compact 2-step nilmanifolds M
Γ and M ′

Γ′ are isometric or not, if they
have conjugated geodesic flows?

This problem has been studied well through the works of Eberlein, Gordon and Mao, (e.g.,
[3], [6-7]). We have already considered these in [4] by an Algebraic-Geometric approach, espe-
cially in the category of Lie groupoids. Also, we studied a result of Gordon, Mao and Schueth
about compact 2-step nilmanifolds with symplectically conjugate flows, [7]. Then, via Poisson
cohomology and other respective notions, we presented a proof of their result which extends not
only symplectic concepts to Poisson geometry, but also 2-step nilmanifolds to manifolds with
extensible momentum maps, [5].

On the other hand, many objects in Poisson geometry and of course, in groupoids, which
we used them in [4-5], such as dual pairs, bimodules, tensor products, and Morita equivalence
have direct analogous in the realm of von Neumann algebras. Also, the theory of von Neumann
algebras replaces ordinary measure theory when one has to deal with noncommutative spaces
which naturally arise in geometry or noncommutative geometry, specially through the papers of
Connes, [2].

These links do not seem to exist with C∗-algebras on any types of analytic algebras. For
examples, for a subset A ⊂ B(H), we define the commutant A′ to be {L ∈ B(H) : ∀a ∈ A, La =

Tamsui Oxford Journal of Informational and Mathematical Sciences 33(1) (2019)
Aletheia University 57



aL}. Similarly, if B is a subset of a Poisson algebra P , then its commutant is B′ = {f ∈ P :
{f,B} = 0}. On the analytic side, a dual pair (A,A′) is a pair of unital ∗-subalgebras A and A′

of B(H) that are the mutual commutants of each other. The Double Commutant Theorem of
von Neumann implies that all von Neumann algebras satisfy this condition, [2], [8].

Structure. After some preliminaries about von Neumann algebras, by recovering the action
of a locally compact Lie group from a crossed product of a von Neumann algebra, we reach
to a direct proof of one of the well-known proposition of O’Neil. This is about the properly
discontinuous group of isometries, Γ, acting on a simply connected Riemannian manifold M .
This gives the characterization of the isometry group of M

Γ by normalizers N(Γ) and it is usually
used to solve problems of rigidity, [4-5]. The exposed proof leads to an extension of it to the
ergodic actions of the countable discrete infinite groups on a σ-finite measure space. More details
can be found in Theorem 3.1.

Lastly, advanced exploration of nilmanifolds in measure spaces via special measurable func-
tionals and suitable actions of Lie groups on simply connected manifolds leads to study those
works using concepts of von Neumann algebras. This gives us the other proof of the analytic
proposition of Gordon and Mao which exposed in Theorem 3.2.

It is to be noted that proofs provided, although long and completely different from the
standard proof used in existing resources have a general approach to its structure. The general
approach introduced is such that the given proposition is a special case of it. For this reason,
while providing a link between some geometric and analytic concepts (apparently unrelated), it
can include many results in each notion.

2. Main Concepts

2.1 Preliminaries of von Neumann Algebras.
In this section we review some notions about von Neumann algebras. We assume that the

reader know the main concepts of C∗-algebras and von Neumann algebras which can found in
[8] and [10].

Let B(H), as usual, is the set of bounded operators on a Hilbert space H. A von Neumann
algebra is an involutive subalgebra A of the algebra of B(H) that has the property of being the
commutant of its commutant. Let G is a group acting by automorphisms such as u on a von
Neumann algebra A and consider the vector space of finite formal sums

∑
g∈G agug with ag ∈ A.

We use the crossed product A o G which can be obtained by multiplying the sums with the
rules uguh = ugh(and u1 = 1) and ugau−1

g = g(a).
In the case of von Neumann algebras, there is a (strong continuous) unitary group repre-

sentation g 7→ ug with ugAu∗g = A,∀g ∈ G. In this setting αg(x) = ugxu∗g (g ∈ G, x ∈ A),
defines an action of G on A. Each αg is a ∗-automorphism of A and that the mapping g → αg

is a homomorphism of G into Aut(A). All finite linear combinations of all vector states (i.e,
positive linear functionals on A with norm equals 1) on A are dense in A′. Then, the action α
is implemented by the unitary representation ug. Finally, an inner automorphism of A is in the
form Adu(x) = uxu∗ for u a unitary in A and an outer automorphism, if the only g in G for
which αg is inner is the identity. Also, an action G on A is said to be ergodic if the stabilizer
AG = Cid.

We assume, α : G → Aut(A) is an (continuous) action of the locally compact group G with
(left) Haar measure dg on the von Neumann algebra A on the Hilbert space H. Form the Hilbert
space K = L2(G,H) = L2(G) ⊗H and let G act on K by ug = λg ⊗ 1, λ being the left regular
representation of G in the Hilbert space L2(G), i.e, (λgξ)(h) = ξ(g−1h), ∀g, h ∈ G, ξ ∈ L2(G).
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The action α of G on A is encoded by the action A on K:

(x̃f)(g) = αg−1(f(g)), g ∈ G, f ∈ A, (2− 1)

which satisfies the equivariance condition

x̃ ◦ αg(f(g)) = λg(x̃f)(g)λ−1
g , ∀g ∈ G, f ∈ A, (2− 2)

particularly, ugx̃u∗g = α̃g(x). In this way, the crossed product A oα G is the von Neumann
algebra on K = L2(G)⊗H generated by {ug : g ∈ G} and {x̃ : x ∈ A}.

Equality (2 − 2) says that finite linear combinations
∑

g x̃gug form a dense ∗-subalgebra of
Aoα G. Moreover the ug’s are linearly independent over A in the sense that

∑
g x̃gug = 0 result

to x̃g = 0 for each g in the sum.
When the group G is discrete, any element of the crossed product can be uniquely written

as above formal sum, where the f = f(g),s are uniquely determined as matrix elements in the
natural basis of `2(G), i.e, matrix of operators on K = `2(G) ⊗ H. Also, since sum converges
pointwise at least on the dense set of functions of finite support from G to H, any matrix of this
form which defines a bounded operator on K is in Aoα G. This is no longer the case when the
group G is not discrete. For more details refer to [8] and [13].

2.2. Preliminaries of Nilmanifolds
As the notions of [3] and [6-7], a Riemannian nilmanifold is a quotient M

Γ of a simply
connected nilpotent Lie group M by a discrete subgroup Γ; together with a Riemannian metric
g whose lift to M is left-invariant. A nilmanifold M

Γ has step size k if M is k-step nilpotent.
Especially, a Lie group M is said to be two-step nilpotent if its Lie algebra M satisfies

[M, [M,M]] = 0 equivalently [M,M] is central in M. Let g be a left-invariant Riemannian
metric on 2-step nilpotent Lie group M . Then g defines an inner product 〈., .〉 on the Lie algebra
M of M . Let Z = [M,M] and let V denote the orthogonal complement of Z in M relative to
〈., .〉. Note that while Z is contained in the center of M, it does not necessarily coincide with
the full center. For z ∈ Z, a skew symmetric linear transformation J(z) : V → V can be defined
by J(z)x = (ad(x))∗z for x ∈ V, where ad(x))∗ denotes the adjoint of ad(x). Equivalently,

〈J(z)x, y〉 = 〈[x, y], z〉, for x, y ∈ V, z ∈ Z, (2.3)

and this process is reversible.
An authomorphism Φ of M is said to be Γ-almost inner if Φ(γ) is conjugate to γ for all

γ ∈ Γ. The automorphism is said to be almost inner if Φ(x) is conjugate to x for all x ∈ M .
A derivation ϕ of the Lie algebra M is said to be Γ-almost inner, respectively almost inner, if
ϕ(X) ∈ [M, X] for all X ∈ logΓ, respectively, for all X ∈M.

3. Applications

Theorem 3.1. ([9]) Let Γ be a properly discontinuous group of isometries of a simply
connected Riemannian manifold M . Then group I(M

Γ ) of isometries of M
Γ is isomorphic to N(Γ)

Γ ,
where N(Γ) is the normalizer of Γ in I(M).

Proof. The First Approach: Let A is a factor whose center is C1. For u =
∑

g agug

in the normalizer N(A) = {u unitary in A o G| uAu∗ = A}, there is a β ∈ Aut(A) so that
ux = β(x)u, ∀x ∈ A. Then by Lemma 11.2.6 of [8], there can be only one g for which ag is
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different from 0 and for g, ag is unitary. Therefore, the quotient N(A)/U(A) is in fact G itself
where U(A) is the unitary group as a normal subgroup. So we recover G and its action (up to
inner automorphisms) on A.

As Radon-Nikodym Theorem, [1], the only remaining case is A = L∞(X, µ), where (X, µ)
is a localizable measure space. Similar structure concludes that on the support of the trans-
formation ag ∈ A, we have agαg(x) = β(x), for all L∞-functions x and β ∈ Aut(A). Then,
by Proposition 11.2.10 of [8], there is a partition of X into measurable subsets, one each of
which the transformation of X agrees with some element of G and such a transformation is
implemented by a unitary in N(L∞(X), µ).

Consider the group von Neumann algebra of Γ. Then, the expressed structure can be applied
to M

Γ which acting freely on simply connected Riemannian manifold M , (because of properly
discontinuous action of Γ on it). Lastly, a group von Neumann algebra of a discrete group Γ,
vN(Γ), is the special case of the crossed product when A = C and the action is trivial.

The Second Approach: An Extension. Consider (G, X, µ) which G denoted a countable
discrete infinite group and (X, µ) be a standard σ-finite measure space on which G acts ergod-
ically. Let [g] denote the group of all Borel automorphisms α of X such that (α(x), x) ∈ g for
every x ∈ X. For an ergodic transformation group (G, X, µ), the normalizer N [g] is the group of
all non-singular transformations T on {X, µ} such that TGx = GTx for almost every x ∈ X. As
in the relation (2− 1) of before section, each α ∈ N [g] will be identified with the automorphism
of A = L∞(X, µ) defined by (αf)(x) = f(α−1x).

In this case, by using the relations (2−1) and (2−2) of before section, the normalizer N(A)
of A is precisely the image {λg : g ∈ [g]}. Then, an automorphism α ∈ Aut(A) can be extended
to an element of Aut(A oα G) if and only if α ∈ N [g]. Specially for a properly discontinuous
group of isometries of a simply connected Riemannian manifold M we have the isomorphism
N(Γ)

Γ
∼= I(M

Γ ) of isometries of M
Γ , where N(Γ) is the normalizer of Γ in I(M).

Finally, the definition of von Neumann algebras based on a commutant assumption lead us
to the probably another proof of some results about the commutative assumptions. In this way,
we give the other proof of a proposition of Gordon and Mao which has been used in some rigidity
problems for 2-step nilmanifolds and we used it in [4-5].

Theorem 3.2. ([6]) Let M be a 2-step nilpotent Lie algebra with an inner product 〈·, ·〉 and
ϕ be an almost inner derivation of continuous type on M say ϕ(x) = [σ(x), x] with σ continuous
on M\{0}. Let z ∈ Z(M) and y ∈ ker(J(z)). Then

〈ϕ(x), z〉 = 〈[σ(y), x], z〉, ∀x ∈M,

where, J(z) : V → V, defined as equation by (2.3), is a skew symmetric linear transformation
defined by J(z)x = (ad(x))∗z for x ∈ V.
In special case, if the center of M properly contains the derived algebra, then every almost inner
derivation of continuous type on M is inner.

Proof. It is to be noted that Γ-almost inner derivations of M, AID(M), endowing with
the topology of pointwise norm convergence is a von Neumann algebra. Also, since M is 2-step
nilpotent, AID(M) will be 1-step nilpotent, i.e, its commutant (as a derivation, too) is abelian.
If consider AID(M) ⊆ Der(M) as a von Neumann algebra, which its commutant is abelian,
then as an result of [11] (Theorem 2.5.3), any derivation implemented by an (fixed) element.
This automatically result to the innerness of derivations.
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