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ABSTRACT. Let B(H) be the C*-algebra of all bounded linear operators on Hilbert space
‘H. In this paper, we introduce three concept of *-products on B(#), and present a form for
a unital surjective bounded linear map ¢ : B(H) — B(H), which preserves these #-products

in both directions.

1. INTRODUCTION AND PRELIMINARIES

Suppose that X and ) are linear spaces and ¢ : X — Y is a map. We say that ¢ is a

preserving map in both directions, whenever
x € X has the property p < ¢(x) € Y has the property p.

In mathematics, the linear preserving problems usually define on matrix spaces or oper-
ator spaces and many of mathematicians study on linear maps that act on those spaces,
where preserve some properties such as Birkhoff orthegonality, unitary operators, spectral
radius, quasi-isometry,. .., and they try to present special form for such linear maps, which
mentioned. For more details one can see, [2, B, 9, [0].

Suppose that H is a complex Hilbert space and B(#H) the C*-algebra of all bounded
linear operators on H. In this paper, first we define three concept of *-products on B(H)

and we characterize the surjective bounded linear maps ¢ : B(H) — B(#), which preserve
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these #-products in both directions. For each self-adjoint operator S € B(H) the operator
exp(itS) € B(H) plays substantial role in the proof of the main theorems.

Let K € B(#) be a nonzero positive invertible element. If we define (z,y)x = (Kx,y) for
each z,y € H, then (-, )k is a inner product on H and Hx = (H, (-, -) k) is a Hilbert space
and T* = K~ 'T* K is the K-adjoint of T with respect to the inner product (-, -) g, where T* is
the adjoint of T with respect to the inner product (-, -) ( that is (T'z,y) = (x,T*y) =,y € H),
see [3].

Recall that # is an involution on B(#) and the set of all bounded linear operators on H

with respect to inner product (.,.)x is the same as B(H, (.,.))

Definition 1.1. Let S € B(#H). Then S is called K-self-adjoint, K-unitary, if K~'S*K = §
and TK'T*K = K~ 'T*KT = I, respectively.

Recall that a C*-algebra A is said to be prime if for each a,b € A, aAb = {0} implies
a=0orb=0.

Lemma 1.2. [9, P. 3] The C*-algebra B(H) is prime.

Definition 1.3. Let A and B be two *-algebras. A linear map ¢ : A — B is called a
x-Jordan homomorphism if p(a?) = p(a)? and p(a*) = p(a)* for every a € A.

Theorem 3.1 of [7] ensures that a *-Jordan homomorphism onto a prime C*-algebra is

either a x-homomorphism or a x-anti-homomorphism.

2. LINEAR MAPS THAT PRESERVE *-PRODUCT

In this section, we characterize the unital linear maps from B(#) onto itself that preserve

x-product, 3-order x-product, and inverse *-product in both directions.

Definition 2.1. Let T\, .S € B(H). We say that T"and S are *-product and denoted by T'*.S,
whenever T'S* is a projection. A map ¢ : B(H) — B(#H) is said to be a s-product preserving
in both directions, when T'S* is a projection if and only if ¢(T)(S)* is a projection.
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Example 2.2. Let T' =

0
0 ] € M3(C) and x is the conjugate transpose. Then T =

01
0

. Thus

0 0
01

TT* =
01

,<TT*>2=[0 0].

Therefore T' is a x-product (with itself), since TT™* is projection.

Lemma 2.3. [0, Theorem 2.3.3] Let T' € B(H). The following statements are equivalent:
(i) TT* is a projection
(ii) TT*T =T

(iii) T*TT* = T*.
To achieve our next result, we utilize the strategy of [d].

Theorem 2.4. Let T € B(H) and ¢ : B(H) — B(H) be a unital surjective bounded linear
map. If @ preserves x-product in both directions, then there are unitary operators U,V &
B(H) such that

o(T)=UTV or oT)=UT"V
where T is the transpose of T with respect to an arbitrary but fized orthonormal basis of H.
Proof. Pick a self-adjoint operator S in B(#). Then exp(itS)* = exp(—itS). Thus
exp(itS) exp(itS)* = I,

that is exp(it.S) is a *-product with itself. Therefore ¢(exp(itS))*p(exp(itS)) is a projection,

since ¢ preserves x-product. Lemma P=3 implies that

plexp(itS)) = p(exp(its))p(exp(itS)) p(exp(itSs))
it
5
¢(I+it5+%>252+---)

= T +at(2p(8) — p(S)) + 2(p(S)"@(S) + p(S)p(S)*
1

— @S = (%) = (9)%) -+

2 1\ 2
SQ+---)¢(I+itS+@SQ+---)*

= o +itS+ 51
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Hence
I +itp(S) — §¢(52) +-0 = T+it(20(S) — (5)%)
b 2(p(5)"0(S) + p(S)e(S)
08— p(8%) — p(S)) -
It follows that
o(5) = o(S) 2.)
and
o) 6(S) + (S)P(S)" — 5p(S?)" — 50(S%) — @) =0 (2.2

for every self-adjoint operator S € B(#). By (E), (22) and similar to the proof of [6,
Theorem 3.3.], for every T' € B(H) we have

(1) o(T7) = (1),

(i) $(T?) = (T)?.

Therefore ¢ is a x-Jordan homomorphism. It is known that every x-Jordan homomorphism
on a prime algebra is a *-homomorphism or a *-anti-homomorphism. Since B(#) is a prime
algebra, ¢ is a *-homomorphism or a *-anti-homomorphism. Now we show that ¢ is injective.
Let S € B(H) be self-adjoint and ¢(S) = 0. Then (S + 1) =1 and ¢(S — I) = —1, since
o(I) = 1. Clearly I« and —I*—1 are projections. On the other hand ¢ preserves *-product
in both directions, so (S+1)* (S + 1) and (S —I)* (S — I) are projections. By Lemma 223
(i1), we get S —S? =0 and S+ 5% =0. Thus S = 0. Let T € B(H) be an arbitrary element
and p(T') = 0. There exist self-adjoint operators Si, Sy € B(H) such that T'= S; 4+ 1S3 and

©(S1) +1ip(S2) = p(T) = 0= p(T)" = p(S1) —ip(Sa).

So ¢(S1) = 0 and ¢(S;) = 0. Therefore S; = Sy = 0, and also T' = 0, which implies that ¢

is injective. Then it is a x-automorphism or a x-anti-automorphism. U

Corollary 2.5. Let T € B(H) and ¢ : B(H) — B(H) be a unital surjective bounded linear
map. If @ preserves §-product in both directions, then there are K-unitary operators U,V &€

B(H) such that

o(T)=UTV or oT)=UT"V
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where T is the transpose of T with respect to an arbitrary but fized orthonormal basis of H.

Definition 2.6. Let T, S € B(H). Then T and S are 3-order *-product denoted by T %3 S,
whenever T35*3 = T'S*,

o]
Example 2.7. Let T' = Lo € My(C) and x is the conjugate transpose. Then
(101 ] 11 10
T* e s j-hk3 = 5 TS — .
0 0 00 10

A straightforward computation shows that 737** = TT*. Hence T is a 3-order *-product
with itself.

Theorem 2.8. Let T € B(H) and ¢ : B(H) — B(H) be a unital surjective bounded linear
map. If ¢ preserves 3-order x-product in both directions, then there are unitary operators

U,V € B(H) such that
o(T)=UTV or oT)=UT"V
where T is the transpose of T with respect to an arbitrary but fized orthonormal basis of H.
Proof. We utilize the strategy of previous theorem. Since exp(itS)* = exp(—itS), so
exp(itS)3exp(itS)** = I = exp(itS) exp(itS)*,

that is exp(itS) is a 3-order *-product with itself, for all £ € R. On the other hand ¢ preserves
3-order x-product, thus ¢(exp(itS))3p(exp(itS))** = @(exp(itS))p(exp(itS))*. Lemma 23
implies that

I+ 3it(p(S) = (5)") + tQ(—g(sO(S2)* +9(5%) = 3(p(8)™ + @(5)*) + 90(S)p(S)") + ... =

1 * *
I+it(p(S) = p(S)) + (=5 (p(5)" + @(S%) + () (5))) + ..
s0 ¢(S) = ¢(S)* and consequently ¢(5?) = ¢(S)?. Thus for every T € B(H), we have
(1) o(T7) = (1",
(ii) (1) = @(T)*.
Therefore ¢ is a *-Jordan homomorphism. In continue, we prove that ¢ is an injective

operator. Let S € B(#H) be self-adjoint and ¢(S) = 0. Clearly
P(S = IP°p(S = 1) = (S = D(S — 1)",
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(S +DPp(S + 1) = (S + Dp(S + I)".
Since ¢ preserves 3-order x-product in both directions, we reach 2S¢ 4+ 3054 4 2852 = 0.

Then S = 4144, +7,0. Therefore S = 0, since S is self-adjoint. The rest is similar to the
proof of Theorem P4, 0

Definition 2.9. Let T,.S € B(H). Then T and S are inverse x-product denoted by T 7! S,
whenever T'S* + S*T = 21.

0 1
10

0

Example 2.10. Let T' = € B(H), then T* =

1
0 ] . Clearly TT™* +T*T = 21,
so T is a inverse x-product.

Theorem 2.11. Let T € B(H) and ¢ : B(H) — B(H) be a unital surjective bounded linear
map. 1If ¢ preserves inverse x-product in both directions, then there are unitary operators
U,V € B(H) such that

o(T)=UTV or oT)=UT"V
where T is the transpose of T with respect to an arbitrary but fized orthonormal basis of H.

Proof. We know that exp(itS) exp(itS)* +exp(itS)* exp(itS

~—

= 2. Since ¢ preserves inverse

s-product so ¢(exp(itS))p(exp(itS))* + p(exp(itS))*p(exp(itS)) = 21. Thus
(I +itp(S) — (;—)!290(52) + ) —itp(S) — %@(52)* +- )+
(I —itp(S)" — %@(52)* + - ) (I +itp(S) — %@(52) +---)=2I.

Therefore, we get
21 +it(=20(5)" + 20(S5)) + £(=(S%)" + @(S)e(S)" = 9(S%) + ¢(5)"¢(5)) + -~ = 21.

From the equation above, we reach ¢(S) = p(S)* and ¢(S?) = »(S)%. Thus for every
T € B(H), we have

(1) o(T7) = (1),

(i) (T?) = o(T)2

Therefore ¢ is a x-Jordan homomorphism. Let S € B(H) be self-adjoint and ¢(S) = 0.
Thus

oI = S)p(I = S)" + ol = S5) e —S)=2I,
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oI+ S)p(I+S)" + (I + S) (I + S) = 2I.

Since @ preserves inverse x-product in both directions, we reach (I —S)(I —S)*+(1—5)*(I —
S)y=2Iand (I +S)(I+S) +(I+S)(I+S5)=2I. Therefore S* —45 =0, S*+45 =0.
Consequently S = 0. U

By Theorem I8 and Theorem PT1l, we conclude the following corollaries.

Corollary 2.12. Let T € B(H) and ¢ : B(H) — B(H) be a unital surjective bounded linear
map. If  preserves 3-order fi-product in both directions, then there are K-unitary operators
U,V € B(H) such that

o(T)=UTV or oT)=UT"V
where T is the transpose of T with respect to an arbitrary but fized orthonormal basis of H.

Corollary 2.13. Let ¢ : B(H) — B(H) be a unital surjective bounded linear map. If ¢

preserves inverse f-product in both directions, then there are K-unitary operators U,V &
B(H) such that

o(T)=UTV or oT)=UT"V

where T is the transpose of T with respect to an arbitrary but fized orthonormal basis of H.
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