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Abstract. Let B(H) be the C∗-algebra of all bounded linear operators on Hilbert space

H. In this paper, we introduce three concept of ∗-products on B(H), and present a form for

a unital surjective bounded linear map φ : B(H) → B(H), which preserves these ∗-products
in both directions.

1. Introduction and Preliminaries

Suppose that X and Y are linear spaces and φ : X → Y is a map. We say that φ is a

preserving map in both directions, whenever

x ∈ X has the property p ⇔ φ(x) ∈ Y has the property p.

In mathematics, the linear preserving problems usually define on matrix spaces or oper-

ator spaces and many of mathematicians study on linear maps that act on those spaces,

where preserve some properties such as Birkhoff orthegonality, unitary operators, spectral

radius, quasi-isometry,. . . , and they try to present special form for such linear maps, which

mentioned. For more details one can see, [2, 5, 9, 10].

Suppose that H is a complex Hilbert space and B(H) the C∗-algebra of all bounded

linear operators on H. In this paper, first we define three concept of ∗-products on B(H)

and we characterize the surjective bounded linear maps φ : B(H) → B(H), which preserve
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these ∗-products in both directions. For each self-adjoint operator S ∈ B(H) the operator

exp(itS) ∈ B(H) plays substantial role in the proof of the main theorems.

Let K ∈ B(H) be a nonzero positive invertible element. If we define ⟨x, y⟩K = ⟨Kx, y⟩ for
each x, y ∈ H, then ⟨·, ·⟩K is a inner product on H and HK = (H, ⟨·, ·⟩K) is a Hilbert space

and T ♯ = K−1T ∗K is theK-adjoint of T with respect to the inner product ⟨·, ·⟩K , where T ∗ is

the adjoint of T with respect to the inner product ⟨·, ·⟩ ( that is ⟨Tx, y⟩ = ⟨x, T ∗y⟩ x, y ∈ H),

see [3].

Recall that ♯ is an involution on B(H) and the set of all bounded linear operators on H
with respect to inner product ⟨., .⟩K is the same as B(H, ⟨., .⟩)

Definition 1.1. Let S ∈ B(H). Then S is called K-self-adjoint, K-unitary, if K−1S∗K = S

and TK−1T ∗K = K−1T ∗KT = I, respectively.

Recall that a C∗-algebra A is said to be prime if for each a, b ∈ A, aAb = {0} implies

a = 0 or b = 0.

Lemma 1.2. [9, P. 3] The C∗-algebra B(H) is prime.

Definition 1.3. Let A and B be two ∗-algebras. A linear map φ : A → B is called a

∗-Jordan homomorphism if φ(a2) = φ(a)2 and φ(a∗) = φ(a)∗ for every a ∈ A.

Theorem 3.1 of [7] ensures that a ∗-Jordan homomorphism onto a prime C∗-algebra is

either a ∗-homomorphism or a ∗-anti-homomorphism.

2. Linear maps that preserve ∗-product

In this section, we characterize the unital linear maps from B(H) onto itself that preserve

∗-product, 3-order ∗-product, and inverse ∗-product in both directions.

Definition 2.1. Let T, S ∈ B(H). We say that T and S are ∗-product and denoted by T ∗S,
whenever TS∗ is a projection. A map Φ : B(H) → B(H) is said to be a ∗-product preserving
in both directions, when TS∗ is a projection if and only if φ(T )φ(S)∗ is a projection.
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Example 2.2. Let T =

[
0 0

1 0

]
∈ M2(C) and ∗ is the conjugate transpose. Then T ∗ =[

0 1

0 0

]
. Thus

TT ∗ =

[
0 0

0 1

]
, (TT ∗)2 =

[
0 0

0 1

]
.

Therefore T is a ∗-product (with itself), since TT ∗ is projection.

Lemma 2.3. [11, Theorem 2.3.3] Let T ∈ B(H). The following statements are equivalent:

(i) TT ∗ is a projection

(ii) TT ∗T = T

(iii) T ∗TT ∗ = T ∗.

To achieve our next result, we utilize the strategy of [9].

Theorem 2.4. Let T ∈ B(H) and φ : B(H) → B(H) be a unital surjective bounded linear

map. If φ preserves ∗-product in both directions, then there are unitary operators U, V ∈
B(H) such that

φ(T ) = UTV or φ(T ) = UT trV

where T tr is the transpose of T with respect to an arbitrary but fixed orthonormal basis of H.

Proof. Pick a self-adjoint operator S in B(H). Then exp(itS)∗ = exp(−itS). Thus

exp(itS) exp(itS)∗ = I,

that is exp(itS) is a ∗-product with itself. Therefore φ(exp(itS))∗φ(exp(itS)) is a projection,
since φ preserves ∗-product. Lemma 2.3 implies that

φ(exp(itS)) = φ(exp(itS))φ(exp(itS))∗φ(exp(itS))

= φ(I + itS +
(it)2

2!
S2 + · · · )φ(I + itS +

(it)2

2!
S2 + · · · )∗

φ(I + itS +
(it)2

2!
S2 + · · · )

= I + it(2φ(S)− φ(S)∗) + t2(φ(S)∗φ(S) + φ(S)φ(S)∗

− 1

2
φ(S2)∗ − φ(S2)− φ(S)2) · · · .
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Hence

I + itφ(S)− t2

2
φ(S2) + · · · = I + it(2φ(S)− φ(S)∗)

+ t2(φ(S)∗φ(S) + φ(S)φ(S)∗

− 1

2
φ(S2)∗ − φ(S2)− φ(S)2) · · · .

It follows that

φ(S) = φ(S)∗ (2.1)

and

φ(S)∗φ(S) + φ(S)φ(S)∗ − 1

2
φ(S2)∗ − 1

2
φ(S2)− φ(S)2 = 0 (2.2)

for every self-adjoint operator S ∈ B(H). By (2.1), (2.2) and similar to the proof of [6,

Theorem 3.3.], for every T ∈ B(H) we have

(i) φ(T ∗) = φ(T )∗,

(ii) φ(T 2) = φ(T )2.

Therefore φ is a ∗-Jordan homomorphism. It is known that every ∗-Jordan homomorphism

on a prime algebra is a ∗-homomorphism or a ∗-anti-homomorphism. Since B(H) is a prime

algebra, φ is a ∗-homomorphism or a ∗-anti-homomorphism. Now we show that φ is injective.

Let S ∈ B(H) be self-adjoint and φ(S) = 0. Then φ(S + I) = I and φ(S − I) = −I, since

φ(I) = I. Clearly I ∗I and −I ∗−I are projections. On the other hand φ preserves ∗-product
in both directions, so (S + I) ∗ (S + I) and (S − I) ∗ (S − I) are projections. By Lemma 2.3

(ii), we get S − S2 = 0 and S + S2 = 0. Thus S = 0. Let T ∈ B(H) be an arbitrary element

and φ(T ) = 0. There exist self-adjoint operators S1, S2 ∈ B(H) such that T = S1 + iS2 and

φ(S1) + iφ(S2) = φ(T ) = 0 = φ(T )∗ = φ(S1)− iφ(S2).

So φ(S1) = 0 and φ(S2) = 0. Therefore S1 = S2 = 0, and also T = 0, which implies that φ

is injective. Then it is a ∗-automorphism or a ∗-anti-automorphism. □

Corollary 2.5. Let T ∈ B(H) and φ : B(H) → B(H) be a unital surjective bounded linear

map. If φ preserves ♯-product in both directions, then there are K-unitary operators U, V ∈
B(H) such that

φ(T ) = UTV or φ(T ) = UT trV
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where T tr is the transpose of T with respect to an arbitrary but fixed orthonormal basis of H.

Definition 2.6. Let T, S ∈ B(H). Then T and S are 3-order ∗-product denoted by T ∗3 S,
whenever T 3S∗3 = TS∗.

Example 2.7. Let T =

[
1 0

1 0

]
∈ M2(C) and ∗ is the conjugate transpose. Then

T ∗ =

[
1 1

0 0

]
, T ∗3 =

[
1 1

0 0

]
, T 3 =

[
1 0

1 0

]
.

A straightforward computation shows that T 3T ∗3 = TT ∗. Hence T is a 3-order ∗-product
with itself.

Theorem 2.8. Let T ∈ B(H) and φ : B(H) → B(H) be a unital surjective bounded linear

map. If φ preserves 3-order ∗-product in both directions, then there are unitary operators

U, V ∈ B(H) such that

φ(T ) = UTV or φ(T ) = UT trV

where T tr is the transpose of T with respect to an arbitrary but fixed orthonormal basis of H.

Proof. We utilize the strategy of previous theorem. Since exp(itS)∗ = exp(−itS), so

exp(itS)3exp(itS)∗3 = I = exp(itS) exp(itS)∗,

that is exp(itS) is a 3-order ∗-product with itself, for all t ∈ R. On the other hand φ preserves

3-order ∗-product, thus φ(exp(itS))3φ(exp(itS))∗3 = φ(exp(itS))φ(exp(itS))∗. Lemma 2.3

implies that

I + 3it(φ(S)− φ(S)∗) + t2(−3

2
(φ(S2)∗ + φ(S2))− 3(φ(S)∗2 + φ(S)2) + 9φ(S)φ(S)∗) + ... =

I + it(φ(S)− φ(S)∗) + t2(−1

2
(φ(S2)∗ + φ(S2)) + φ(S)φ(S)∗)) + ...,

so φ(S) = φ(S)∗ and consequently φ(S2) = φ(S)2. Thus for every T ∈ B(H), we have

(i) φ(T ∗) = φ(T )∗,

(ii) φ(T 2) = φ(T )2.

Therefore φ is a ∗-Jordan homomorphism. In continue, we prove that φ is an injective

operator. Let S ∈ B(H) be self-adjoint and φ(S) = 0. Clearly

φ(S − I)3φ(S − I)∗3 = φ(S − I)φ(S − I)∗,
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φ(S + I)3φ(S + I)∗3 = φ(S + I)φ(S + I)∗.

Since φ preserves 3-order ∗-product in both directions, we reach 2S6 + 30S4 + 28S2 = 0.

Then S = ±14i,±i, 0. Therefore S = 0, since S is self-adjoint. The rest is similar to the

proof of Theorem 2.4. □

Definition 2.9. Let T, S ∈ B(H). Then T and S are inverse ∗-product denoted by T ∗−1 S,

whenever TS∗ + S∗T = 2I.

Example 2.10. Let T =

[
0 1

1 0

]
∈ B(H), then T ∗ =

[
0 1

1 0

]
. Clearly TT ∗ + T ∗T = 2I,

so T is a inverse ∗-product.

Theorem 2.11. Let T ∈ B(H) and φ : B(H) → B(H) be a unital surjective bounded linear

map. If φ preserves inverse ∗-product in both directions, then there are unitary operators

U, V ∈ B(H) such that

φ(T ) = UTV or φ(T ) = UT trV

where T tr is the transpose of T with respect to an arbitrary but fixed orthonormal basis of H.

Proof. We know that exp(itS) exp(itS)∗+exp(itS)∗ exp(itS) = 2I. Since φ preserves inverse

∗-product so φ(exp(itS))φ(exp(itS))∗ + φ(exp(itS))∗φ(exp(itS)) = 2I. Thus

(I + itφ(S)− (t)2

2!
φ(S2) + · · · )(I − itφ(S)∗ − (t)2

2!
φ(S2)∗ + · · · ) +

(I − itφ(S)∗ − (t)2

2!
φ(S2)∗ + · · · )(I + itφ(S)− (t)2

2!
φ(S2) + · · · ) = 2I.

Therefore, we get

2I + it(−2φ(S)∗ + 2φ(S)) + t2(−φ(S2)∗ + φ(S)φ(S)∗ − φ(S2) + φ(S)∗φ(S)) + · · · = 2I.

From the equation above, we reach φ(S) = φ(S)∗ and φ(S2) = φ(S)2. Thus for every

T ∈ B(H), we have

(i) φ(T ∗) = φ(T )∗,

(ii) φ(T 2) = φ(T )2.

Therefore φ is a ∗-Jordan homomorphism. Let S ∈ B(H) be self-adjoint and φ(S) = 0.

Thus

φ(I − S)φ(I − S)∗ + φ(I − S)∗φ(I − S) = 2I,
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φ(I + S)φ(I + S)∗ + φ(I + S)∗φ(I + S) = 2I.

Since φ preserves inverse ∗-product in both directions, we reach (I−S)(I−S)∗+(I−S)∗(I−
S) = 2I and (I + S)(I + S)∗ + (I + S)∗(I + S) = 2I. Therefore S2 − 4S = 0, S2 + 4S = 0.

Consequently S = 0. □

By Theorem 2.8 and Theorem 2.11, we conclude the following corollaries.

Corollary 2.12. Let T ∈ B(H) and φ : B(H) → B(H) be a unital surjective bounded linear

map. If φ preserves 3-order ♯-product in both directions, then there are K-unitary operators

U, V ∈ B(H) such that

φ(T ) = UTV or φ(T ) = UT trV

where T tr is the transpose of T with respect to an arbitrary but fixed orthonormal basis of H.

Corollary 2.13. Let φ : B(H) → B(H) be a unital surjective bounded linear map. If φ

preserves inverse ♯-product in both directions, then there are K-unitary operators U, V ∈
B(H) such that

φ(T ) = UTV or φ(T ) = UT trV

where T tr is the transpose of T with respect to an arbitrary but fixed orthonormal basis of H.
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