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Abstract

The exponentiated Pareto type I distribution is used as a model for the distribution
of city populations within a given area. In this paper, we have considered the dual
generalized order statistics from this distribution. We obtained exact explicit expres-
sions as well as recurrence relations for single and product moments of dual generalized
order statistics from generalized Pareto distribution. Then, we use these results, we
have tabulated the first four moments, skewness and kurtosis of order statistics from
samples of sizes up to 10 for various values of the parameters.

Keywords: Sample; dual generalized order statistics; record values; single and prod-
uct moments; recurrence relations; exponentiated Pareto type I distribution.

1 Introduction

The Pareto distribution was first proposed as a model for the distribution of incomes. It
is also used as a model for the distribution of city populations within a given area. The
Pareto distribution is a skewed, heavy-tailed distribution that is sometimes used to model
the distribution of incomes and other financial variables. Pareto distributions are very
versatile and a variety of uncertainties can be usefully modeled by them. For instance,
they arise as tractable life time models in actuarial science, economics, finance, life testing,
survival analysis, and telecommunications. Many applications of the Pareto distribution
in economics, biology and physics can be found throughout the literature. Burroughs and
Tebbens (2001) discussed applications of the Pareto distribution in modeling earthquakes,
forest fire areas and oil and gas field sizes, and Schroeder, et al. (2010) presented an
application of the Pareto distribution in modeling disk drive sector errors. To add flexibility
to the Pareto distribution, various generalizations of the distribution have been derived,
including: the generalized Pareto distribution (Pickands, 1975), the beta-Pareto distribution
(Akinsete, et al., 2008) and the beta generalized Pareto distribution (Mahmoudi, 2011).
One of the important families of distributions in lifetime tests is the exponentiated Pareto
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distribution. The exponentiated Pareto distribution has been introduced by Gupta et al.
(1998). Khan and Kumar (2010) discussed the exponentiated Pareto distribution as an
important model of life time models and derived the explicit expressions and some recurrence
relations for single and product moments of lower generalized order statistics. The Pareto
distribution has probability density function

f(x;α, β) =
αβα

(x+ β)α+1
, x > 0, α, β > 0. (1)

and the corresponding cumulative distribution function is

F (x;α, β) = 1−
(

β

x+ β

)α
, x > 0, α, β > 0. (2)

where β is a scale parameter and α is the shape parameter. Consider the transformation
Y = X + β to get another form of the Pareto distribution

f(x;α, β) =
αβα

xα+1
, β ≤ x <∞, α, β > 0. (3)

Kumar (2013, 2014,) have established the recurrence relations for moment of lower gen-
eralized order statistics and generalized order statistics from exponentiated Lomax and
extended type II generalized Logistic distribution distribution respectively. Also Kumar
and Kulshrestha (2013) obtained relations for moments of record values from generalized
Pareto distribution and Kumar (2015) have established the relations for moments of record
values from generalized rayleigh distribution and Khan et al. (2012) obtained the mo-
ment generating function of lower generalized order statistics from generalized exponential
distribution.

Order statistics and functions of these statistics play an important role in a wide range of
theoretical and practical problems such as characterization of probability distributions and
goodness-of-fit tests, entropy estimation, analysis of censored samples, reliability analysis,
quality control and strength of materials; see Arnold et al. (1992) and David and Nagaraja
(2003) and the references therein for more details. The practicability of moments of order
statistics can be seen in many areas such as quality control testing, reliability, etc. For
instance, when the reliability of an item or product is high, the duration of the failed items
will be high which in turn will make the product too expensive, both in terms of time
and money. This fact prevents a practitioner from knowing enough about the product in a
relatively short time. Therefore, a practitioner needs to predict the failure of future items
based on the times of a few early failures. These predictions are often based on moments
of order statistics.

In this article, we define dual generalized order statistics. It will be shown that order statis-
tics, record values and progressively Type II censored order statistics are special cases of
dual generalized order statistics. First, we derive the explicit expressions for single moments
and product moments order statistics and record values. Further, the characterization of
this distribution by using recurrence relations and conditional moments of dgos. We also
provide tabulations of first four moments, skewness and kurtosis of order statistics and
record values for samples of different sizes of the shape and scale parameters.
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The remaining of the article is organized as follows. In Section 2, we introduce the expo-
nentiated Pareto type I distribution. In section 4, we derive relations for single and product
moments of gos from exponentiated Pareto type I distribution. The obtained relations were
used to compute first four moments and variances of order statistics and record values.
We obtained the characterization of this distribution by using conditional moments of dual
generalized order statistics in Section 5. In Section 6, numreical computations are shown
for various values of α. Section 7 ends with concluding remarks.

2 Exponentiated Pareto Type I Distribution

A random variable X is said to have exponentiated Pareto type I EPTI distribution if its
pddf is given by

f(x) =
λαβα

xα+1
[1− (β/x)α]λ−1, x ≥ β, α, β, λ > 0. (4)

and its corresponding is

F (x) = [1− (β/x)α]λ, x ≥ β, α, β, λ > 0. (5)

Therefore, in view of (4) and (5), we have

αλF (x) =

(
xα+1

βα
− x
)
f(x). (6)

For λ = 1, (5) reduces to Pareto distribution. Plots of the density for selected parameter
values are shown in Figure 1. It can be observed that the EPTI distribution is capable to
modeling various types of data as it can take various shapes (Leptokurtic, platykurtic with
thin tails) for various choices of the parameters.

2.1 Hazard rate function

The basic tools for studying the ageing and reliability characteristics of the system are
the hazard rate (HR) and the mean residual lifetime (MRL). The HR and the MRL deal
with the residual lifetime of the system. The HR gives the rate of failure of the system
immediately after timex , and the MRL measures the expected value of the remaining
lifetime of the system, provided that it has survived up to time x. Thus the hazard rate
function of EPTI is given by

h(x) =
f(x)

1− F (x)

=
λαβαx−(α+1)[1− (β/x)α]λ−1

1− [1− (β/x)α]λ
, x ≥ β, α, β, λ > 0. (7)

Figure 2 indicates that the hazard rate function of the EPTI distribution is uni-modal or
upsidedown bathtub shaped depending on the parameter values.
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Figure 1: Probability density function of EPTI distribution for different values of α, β and
λ.

Figure 2: Hazard rate function of EPTI distribution for different values of α, β and λ.
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Figure 3: Survival function of EPTI distribution for different values of α, β and λ.

3 Generalised order statistics and preliminaries

The concept of generalized order statistics (GOS) was introduced by Kamps (1995) as a
general framework for models of ordered random variables (rv′s). Moreover, many other
models of ordered rv′s, such as, ordinary order statistics (oos), order statistics with non-
integral sample size (nonI), progressively type-II censored order statistics (PCO), upper
record values, upper Pfeifer records and sequential order statistics (sos) are seen to be
particular cases of gos. These models can be effectively applied, e.g., in reliability theory.
However, decreasingly ordered rv′s cannot be integrated into this framework. Consequently,
this model is inappropriate to study, e.g. reversed ordered order statistic and lower record
values models. Using the concept of GOS Pawlas and Szynal (2001) introduced the concept
of dual generalized order statistics (DGOS) to enable a common approach to descending
order statistics, which was further studied by Burkschat et al. (2003) with the name dual
generalized order statistics. The DGOS models enable us to study decreasingly ordered ran-
dom variables like reversed order statistics, lower record values and lower Pfeifer records,
through a common approach below:

Suppose X
′
(1, n,m, k), . . . , X

′
(n, n,m, k), (k ≥ 1, m is a real number), are n lgos from an

absolutely continuous cumulative distribution function (cdf) F (x) with probability density
function (pdf) f(x). Their joint pdf of the form

k

n−1∏
j=1

γj

(n−1∏
i=1

[F (xi)]
mf(xi)

)
[F (xn)]k−1f(xn), (8)

for F−1(1) > x1 ≥ x2 ≥ . . . ≥ xn > F−1(0), where γj = k + (n − j)(m + 1) > 0 for all j,
1 ≤ j ≤ n, k is a positive integer and m ≥ −1. If m = 0 and k = 1, we obtain the joint pdf
of the ordinary order statistics. If k = 1 and m = −1, we obtain the joint pdf of the first n
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record values of the identically and independently distributed (iid) random variables with
cdf F (x) and corresponding pdf f(x). Other statistics contained as particular cases include
sos, progressively type II censored order statistics.

In view of (8), the marginal pdf of the rth lgos, X ′(r, n,m, k) 1 ≤ r ≤ n is

fX′(r,n,m,k)(x) =
Cr−1

(r − 1)!
[F (x)]γr−1f(x)gr−1m (F (x)). (9)

The joint pdf of X ′(r, n,m, k) and X ′(s, n,m, k), 1 ≤ r < s ≤ n is

fX′(r,n,m,k),X′(s,n,m,k)(x, y) =
Cs−1

(r − 1)!(s− r − 1)!
[F (x)]mf(x)gr−1m (F (x))

×[hm(F (y))− hm(F (x))]s−r−1[F (y)]γs−1f(y), x > y, (10)

where Cr−1 =
∏r
i=1 γi, hm(x) = −lnx, if m = −1, hm(x) = 1

m+1x
m+1, if m 6= −1 and

gm(x) = hm(x)− hm(1), x ∈ [0, 1).

4 Relations for single and product Moments of dual gener-
alized order statistics

In this section, we derive explicit expressions and recurrence relations for single and product
moments of dual generalized order statistics from the exponentiated Pareto type I distri-
bution.

4.1 Relations for single moments

We shall first establish explicit expressions for single moments of jth DGOS, E
[
X ′(j)(r, n,m, k)

]
= µ

(j)
r,n,m,k. When m 6= −1

µ
(j)
r,n,m,k =

Cr−1
(r − 1)!

∫ ∞
0

xj(F (x))γr−1f(x)gr−1m (F (x))dx

=
Cr−1

(r − 1)!(m+ 1)r−1

r−1∑
u=0

(−1)u
(
r − 1
u

)∫ ∞
0

xj(F (x))γr−u−1f(x)dx (11)

By setting t = [F (x)]1/λ in (11) and simplifying the resulting expression, we obtain

µ
(j)
r,n,m,k =

βjCr−1
(r − 1)!(m+ 1)r

r−1∑
u=0

(−1)u
(
r − 1
u

) ∞∑
p=0

(j/α)p
p!

× B

(
k

m+ 1
+ n− r + u+

p

λ(m+ 1)
, 1

)
, (12)

where

a(i) =

{
a(a+ 1)...(a+ i− 1), if i > 0,

1, if i = 0.
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Now using the relation,

∞∑
a=0

(−1)aB(a+ k, c) = B(k, c+ b).

we have

µ
(j)
r,n,m,k =

βjCr−1
(r − 1)!(m+ 1)r

∞∑
p=0

(j/α)p
p!

B

(
k

m+ 1
+ n− r +

p

λ(m+ 1)
, r

)

= βj
∞∑
p=0

(j/α)p
p!

1∏r
a=1

(
1 + p

λγr−a

) , j = 1, 2, ... (13)

and when m = −1 that

µ
(j)
r,n,−1,k = (λk)rβj

∞∑
p=0

(j/α)p
p!(λk + p)r

, j = 0, 1, ..... (14)

Special cases
i) Putting m = 0, k = 1 in (13), the explicit formula for single moments of order statistics
of the EPTI distribution can be obtained as

µ
(j)
n−r+1:n = βj Cr:n

∞∑
p=0

(j/α)p
p!

1∏r
a=1

(
1 + p

λ(n−r+a+1)

) .
That is

µ(j)r:n = βj Cr:n

∞∑
p=0

(j/α)p
p!

1∏r
a=1

(
1 + p

λ(r+a)

) ,
where

Cr:n =
n!

(r − 1)! (n− r)!
.

In particular, the mean order statistics and the variance order statistics are

µr:n = β Cr:n

∞∑
p=0

(1/α)p
p!

1∏r
a=1

(
1 + p

λ(r+a)

) , (15)

and

σ2r:n = µ(2)r:n −
[
µ(1)r:n

]2
(16)

respectively. If λ = 1, then (15) and (16) reduces for the mean and the variance of order
statistics of the Pareto distribution.
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ii) Putting k = 1 in (14), we deduce the explicit expression for the moments of lower record
values for the EPTI distribution.

µ
(j)
L(r) = λrβj

∞∑
p=0

(j/α)p
p!(λ+ p)r

,

which is the result obtained by Kumar and Kumar (2017) for r = n.

In particular, the mean record statistics and the variance record statistics are

µL(r) = λrβ

∞∑
p=0

(1/α)p
p!(λ+ p)r

, (17)

and

σ2U(r) = µ
(2)
U(r) −

[
µ
(1)
U(r)

]2
, (18)

respectively. If λ = 1 then (17) and (18) reduces for the mean and the variance of record
values of the Pareto distribution.

Recurrence relations for single moments of DGOS can be obtained in the following theorems.

Before arriving at the main results, we mention the following relations proved by Khan et
al. (2008) which will be used in sequel. For 2 ≤ r ≤ n , n ≥ 2 and k = 1, 2, ...
i)

µ
(j)
r,n,m,k − µ

(j)
r−1,n,m,k = − jCr−1

(r − 1)!(γr

∫ β

α
xj−1[F (x)]γrgr−1m (F (x))dx. (19)

ii)

µ
(j)
r−1,n,m,k − µ

(j)
r−1,n−1,m,k =

(m+ 1)jCr−2
(r − 2)!(γ1

∫ β

α
xj−1[F (x)]γrgr−1m (F (x))dx. (20)

iii)

µ
(j)
r,n,m,k − µ

(j)
r−1,n−1,m,k = − jCr−1

(r − 1)!(γ1

∫ β

α
xj−1[F (x)]γrgr−1m (F (x))dx. (21)

Theorem 1. For the distribution given in (4) and 2 ≤ r ≤ n , n ≥ 2 and k = 1, 2, ...(
1− j

λαγr

)
µ
(j)
r,n,m,k = µ

(j)
r−1,n,m,k −

j

αλβαγr
µ
(j+α)
r,n,m,k. (22)

Throughout, we follow the conventions that µ
(j)
0,n,m,k = 0 for n ≥ 1 and µ

(0)
r,n,m,k = 1 for

1 ≤ r ≤ n.
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Proof From (6) and (19), we have

µ
(j)
r,n,m,k = µ

(j)
r−1,n,m,k

− jCr−1
λα(r − 1)!γr

∫ ∞
β

xj−1[F (x)]γr−1[β−αxα−1 − x]f(x)gr−1m (F (x))dx

=
jCr−1

λα(r − 1)!γr

{∫ ∞
β

xj [F (x)]γr−1f(x)gr−1m (F (x))dx

− β−α
∫ ∞
β

xj+α[F (x)]γr−1f(x)gr−1m (F (x))dx
}

and hence the result.

In particular, upon setting r = 1 in Theorem 1, we deduce the following result.
Corollary 1. For the exponentiated Pareto type I distribution given in (4),(

1− j

λαγ1

)
µ
(j)
1,n,m,k = − j

αλβαγr
µ
(j+α)
1,n,m,k. (23)

Special Cases.
1) For m = 0 , k = 1 in (22), we get the recurrence relations for ordinary order statistics,(

1− j

λα(n− r + 1)

)
µ
(j)
n−r+1:n = µ

(j)
n−r+2:n −

j

αλβα(n− r + 1)
µ
(j+α)
n−r+1:n.

Replacing (n− r + 1) by (r − 1), we have

µ(j)r:n =

(
1− j

λα(r − 1)

)
µ
(j)
r−1:n +

j

αλβα(r − 1)
µ
(j+α)
r−1:n.

2) For m = −1, k ≥ 1 in (22) and (23), we get recurrence relations for kth record values(
1− j

λαk

)
µ
(j)
L(r):k = µ

(j)
L(r−1):k −

j

αλβαk
µ
(j+α)
L(r):k,

which is the result obtained by Kumar and Kumar (2017).
and (

1− j

λαk

)
µ
(j)
L(1):k = − j

αλβαγr
µ
(j+α)
L(1) .

Theorem 2. For the distribution given in (4) and 2 ≤ r ≤ n , n ≥ 2 and k = 1, 2, ...

µ
(j)
r,n,m,k = µ

(j)
r−1,n−1,m,k −

j(m+ 1)(r − 1)

λαγ1γr

{
µ
(j)
r,n,m,k − β

−αµ
(j+α)
r,n,m,k

}
. (24)

Proof. Results can be established by considering (6) and (20).
Theorem 3. For the distribution given in (4) and 2 ≤ r ≤ n , n ≥ 2 and k = 1, 2, ...

µ
(j)
r,n,m,k = µ

(j)
r−1,n−1,m,k −

j

λαγ1

{
µ
(j)
r,n,m,k − β

−αµ
(j)
r,n,m,k

}
. (25)

Proof. Results can be established by considering (6) and (21).

Tamsui Oxford Journal of Informational and Mathematical Sciences 33(1) (2019)
Aletheia University 19



5 Relations for product moments

We shall first establish explicit expressions for the product moment of ith and jth gen-

eralized order statistics, E
[
X ′(i,j)(r, s, n,m, k)

]
= µ

(i,j)
r,s,n,m,k. On using (10) and binomial

expansion, the the explicit expressions for the product moments of DGOS X ′i(r, n,m, k)
and X ′j(s, n,m, k), 1 ≤ r < s ≤ n can be obtained when m 6= −1 as

µ
(i,j)
r,s,n,m,k =

Cs−1
(r − 1)!(s− r − 1)!(m+ 1)s−2

r−1∑
u=0

s−r−1∑
v=0

(−1)u+v
(
r − 1
u

)(
s− r − 1

v

)
×

∫ ∞
0

xi(F (x))(s−r+u−v)(m+1)−1f(x)I(x)dx, x > y (26)

where

I(x) =

∫ x

0
yj(F (y))γs−v−1f(y)dy. (27)

by setting t = [F (y)]1/λ in (27), we obtain

I(x) = βj
∞∑
p=0

(j/α)(p)[F (x)]γs−v+p/λ

p! (γs−v + p/λ)
.

On substituting the above expression of I(x) in (26), we find that

µ
(i,j)
r,s,n,m,k =

βjCs−1
(r − 1)!(s− r − 1)!(m+ 1)s−2

r−1∑
u=0

s−r−1∑
v=0

∞∑
p=0

(−1)u+v
(
r − 1
u

)(
s− r − 1

v

)
× (j/α)p

p!(γs−v + p/λ)

∫ ∞
β

xi[F (x)]γs−v+(s−r+u−v)(m+1)+p/λ−1f(x)dx. (28)

Again by setting z = [F (x)]1/θ in (28) and simplifying the resulting equation, we get

µ
(i,j)
r,s,n,m,k =

βi+jCs−1
(r − 1)!(s− r − 1)!(m+ 1)s−2

r−1∑
u=0

s−r−1∑
v=0

∞∑
p=0

∞∑
q=0

(−1)u+v

×
(
r − 1
u

)(
s− r − 1

v

)
(j/α)p(i/α)q

p!q!(γs−v + p/λ)(γr−u + (p+ q)/λ)

=
βi+jCs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

∞∑
p=0

∞∑
q=0

(j/α)p(i/α)q
p!q!

× B

(
k

m+ 1
+ n− r +

p+ q

λ(m+ 1), r

)
× B

(
k

m+ 1
+ n− s+

p

λ(m+ 1), s− r

)
(29)

Now using the relation,

∞∑
a=0

(−1)aB(a+ k, c) = B(k, c+ b).
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we have

µ
(i,j)
r,s,n,m,k = βi+j

∞∑
p=0

∞∑
q=0

(j/α)p(i/α)q
p!q!

1∏r
a=1

(
1 + p+q

λγr−a

)∏s
b=r+1

(
1 + p

λγs−b

) . (30)

and whenm = −1 that

µ
(i,j)
r,s,n,−1,k = (λk)sβi+j

∞∑
p=0

∞∑
q=0

(j/α)p(i/α)q
p!q!(λk + p+ q)r(λk + p)s−r

. (31)

Special cases:
i) Putting m = 0, k = 1 in (30), the explicit formula for the product moments of lower
order statistics of the EPTI distribution can be obtained as

µ
(i,j)
n−r+1,n−s+1:n = βi+jCr,s:n

∞∑
p=0

∞∑
q=0

(j/α)p(i/α)q
p!q!

× 1∏r
a=1

(
1 + p+q

λ(n−r+a+1)

)∏s
b=r+1

(
1 + p

λ(n−s+b+1)

) .
That is

µ(i,j)r,s:n = βi+jCr,s:n

∞∑
p=0

∞∑
q=0

(j/α)p(i/α)q
p!q!

1∏r
a=1

(
1 + p+q

λ(s+a)

)∏s
b=r+1

(
1 + p

λ(r+b)

) ,
where

Cr,s:n =
n!

(r − 1)!(s− r − 1)!(n− s)!
.

ii)Putting k = 1 in (31), we deduce the explicit expression for the product moments of lower
record values for the EPTI distribution.

µ
(i,j)
r,s,n,−1,1 = λsβi+j

∞∑
p=0

∞∑
q=0

(j/α)p(i/α)q
p!q!(λ+ p+ q)r(λ+ p)s−r

,

as obtained by Kumar and Kumar (2017).

Making use of (6), we can derive recurrence relation for product moments of DGOS.

Theorem 4 For the distribution given in (4) and for1 ≤ r < s ≤ n − 1, n ≥ 2 and
k = 1, 2, ...

µ
(i,j)
r,s,n,m,k = µ

(i,j)
r,s−1,n,m,k +

j

λαγs

{
µ
(i,j)
r,s,n,m,k − β

−αµ
(i,j+α)
r,s,n,m,k

}
. (32)

Proof. We have (Khan et al. (2008))

µ
(i,j)
r,s,n,m,k = µ

(i,j)
r,s−1,n,m,k +

jCs−1
γs(r − 1)!(s− r − 1)!

∫ β

α

∫ x

α
xiyj−1[F (x)]mf(x)gr−1m (F (x))

× [hm(F (y))− hm(F (x))]s−r−1[F (y)]γsdydx, x > y. (33)
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and hence (32), using (6) and (33).
Remark 1. Under the assumption given in Theorem 4 with k = 1, m = 0 , we get the
recurrence relation for product moment of DGOS Order statistics and at k = 1 ,m = −1 ,
we deduce the recurrence relations for product moments of DGOS record values from EPTI
distribution.

6 Characterization

Theorem 5: Let X be a non-negative random variable having an absolutely continuous
distribution function F (x) with F (0) = 0 and 0 < F (x) < 1 for all x > β, then(

1− j

λαγr

)
µ
(j)
r,n,m,k = µ

(j)
r−1,n,m,k −

j

αλβαγr
µ
(j+α)
r,n,m,k. (34)

if and only if

F (x) = [1− (β/x)α]λ, x ≥ β, α, β, λ > 0.

Proof: The necessary part follows immediately from equation (22). On the other hand if
the recurrence relation in equation (34) is satisfied, then on using equation (6), we have

Cr−1
(r − 1)!

∫ ∞
β

xj [F (x)]γr−1f(x)gr−1m (F (x))dx

=
(r − 1)Cr−1
γr(r − 1)!

∫ ∞
β

xj [F (x)]γr+mf(x)gr−2m (F (x))dx

+
Cr−1

λαγr(r − 1)!

∫ ∞
β

xj [F (x)]γr−1f(x)gr−1m (F (x))dx

− jβ−αCr−1
λαγr(r − 1)!

∫ ∞
β

xj+α[F (x)]γr−1f(x)gr−1m (F (x))dx (35)

Now integrating the first integral on the right hand side of equation (35) by parts, we obtain

Cr−1
(r − 1)!

∫ ∞
β

xj [F (x)]γr−1f(x)gr−1m (F (x))dx

=
jCr−1

γr(r − 1)!

∫ ∞
β

xj−1[F (x)]γrgr−1m (F (x))dx

+
Cr−1

(r − 1)!

∫ ∞
β

xj [F (x)]γr−1f(x)gr−1m (F (x))dx

+
jCr−1

λαγr(r − 1)!

∫ ∞
β

xj [F (x)]γr−1f(x)gr−1m (F (x))dx

− jβ−αCr−1
λαγr(r − 1)!

∫ ∞
β

xj+α[F (x)]γr−1f(x)gr−1m (F (x))dx
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which reduces to

jCr−1
γr(r − 1)!

∫ ∞
β

xj−1[F (x)]γr−1gr−1m (F (x))

{
F (x)− β−αxα+1

λα
f(x) +

x

λα

}
dx = 0. (36)

Now applying a generalization of the Müntz-Szász Theorem (Hwang and Lin, 1984) to
equation (36), we get

F (x) =

[
β−αxα+1

λα
− x

λα

]−1
which proves that

F (x) = [1− (β/x)α]λ, x ≥ β, α, β, λ > 0.

Theorem 6: Let X be a non-negative random variable having an absolutely continuous
distribution function F (x) with F (0) = 0 and 0 < F (x) < 1 for all x > β, then

µ
(j)
s,n,m,k|r,n,m,k = β

∞∑
p=0

(1/α)p[1− (β/x)α]p

p!
∏s−r
j=1

(
1 + p

λγr+j

) . (37)

if and only if

F (x) = [1− (β/x)α]λ, x ≥ β, α, β, λ > 0.

Proof: To prove necessary part, from equation (21), we have

µ
(j)
s,n,m,k|r,n,m,k =

Cs−1
Cr−1(s− r − 1)!(m+ 1)s−r−1

×
∫ x

β
y

[
1−

(
F (y)

F (x)

)m+1
]s−r−1(

F (y)

F (x)

)γs−1 f(y)

f(x)
dy. (38)

Setting u = F (y)
F (x) from (5) in equation (38), we obtain

µ
(j)
s,n,m,k|r,n,m,k =

βCs−1
Cr−1(s− r − 1)!(m+ 1)s−r−1

×
∞∑
p=0

(1/α)p[1− (β/x)α]p

p!

∫ 1

0
(1− um+1)s−r−1up/λ+γs−1du. (39)

Put t = um+1 in (39) and simplifying the expression, we derive the relation in (37).
To prove sufficient part, we have from (37) and (38),

Cs−1
Cr−1(s− r − 1)!(m+ 1)s−r−1

∫ x

β
y
[
(F (x))m+1 − (F (y))m+1

]s−r−1
(F (y))γs−1f(y)dy

= [F (x)]γr+1Hr(x), (40)

where

Hr(x) = β
∞∑
p=0

(1/α)p[1− (β/x)α]p

p!
∏s−r
j=1

(
1 + p

λγr+j

) .
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Differentiating both sides of (40) with respect to x, we get

Cs−1[F (x)]mf(x)

Cr−1(s− r − 2)!(m+ 1)s−r−2

∫ x

β
y
[
(F (x))m+1 − (F (y))m+1

]s−r−2
(F (y))γs−1f(y)dy

= [F (x)]γr+1H ′r(x) + γr+1f(x)Hr(x).

In other words,

γr+1[F (x)]γr+2f(x)Hr+1(x) = [F (x)]γr+1H ′r(x) + γr+1[F (x)]γr+1−1f(x)Hr(x).

Therefore

f(x)

F (x)
=

λα

β−αxα+1 − x
,

whichn proves that

F (x) = [1− (β/x)α]λ, x ≥ β, α, β, λ > 0.

Remark 2. For k = 1, m = 0, we deduce the characterization results of lower order
statistics and record values from EPTI distribution, respectively.

7 Numerical Results

7.1 Tabulations of means and variances

The relations in (24) can be used to compute the expected values and second order moments
of all order statistics and record values for sample sizes n = 1, 2, 3, . . . , 10. In Tables 1 and
2, we have presented the expected values and variances of the rth order statistic from EPTI
distribution for n = 1, 2, . . . , 10 and λ = 1.5, 2 and λ = 2.5, 3.0, respectively. One can see
that the means and variances are decreasing with respect to n but increasing with respect
to λ. In Table 3, we have shown the expected values and variances of upper record values
from EPTI distribution for n = 1, 2, . . . , 10 and λ = 0.5, 1, 1.5 and 2.0. We observe that the
means and variances of upper record values are decreasing with respect to n but increasing
with respect to λ.
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Table 1: Expected values and variances of the rth order statistics from EPTI distribution
for n = 1, 2, . . . , 10 and λ = 1.5, 2

λ r n E(Xr:n) V ar(Xr:n) λ r n E(Xr:n) V ar(Xr:n)

1.5 1 1 1.3265 0.1321 2 1 1 1.3889 0.1543
2 1.1649 0.0225 2 1.2114 0.0283
3 1.1156 0.0096 3 1.1554 0.0129
4 1.0910 0.0055 4 1.1267 0.0078
5 1.0760 0.0037 5 1.1089 0.0054
6 1.0659 0.0027 6 1.0965 0.0040
7 1.0584 0.0020 7 1.0874 0.0032
8 1.0527 0.0016 8 1.0803 0.0026
9 1.0482 0.0013 9 1.0746 0.0022

10 1.0446 0.0011 10 1.0699 0.0019
2 2 1.4881 0.1894 2 2 1.5664 0.2173

3 1.2635 0.0337 3 1.3234 0.0404
4 1.1894 0.0147 4 1.2414 0.0183
5 1.1510 0.0085 5 1.1980 0.0110
6 1.1270 0.0056 6 1.1706 0.0075
7 1.1104 0.0041 7 1.1514 0.0056
8 1.0982 0.0031 8 1.1371 0.0044
9 1.0888 0.0025 9 1.1259 0.0036

10 1.0813 0.0021 10 1.1169 0.0030
3 3 1.6004 0.2295 3 3 1.6880 0.2614

4 1.3377 0.0417 4 1.4054 0.0491
5 1.2471 0.0184 5 1.3064 0.0223
6 1.1989 0.0107 6 1.2529 0.0133
7 1.1684 0.0071 7 1.2186 0.0091
8 1.1470 0.0052 8 1.1943 0.0068
9 1.1312 0.0040 9 1.1761 0.0053

10 1.1188 0.0032 10 1.1619 0.0043
4 4 1.6880 0.2614 4 4 1.7822 0.2967

5 1.3980 0.0481 5 1.4714 0.0561
6 1.2953 0.0214 6 1.3598 0.0255
7 1.2397 0.0125 7 1.2987 0.0153
8 1.2039 0.0084 8 1.2590 0.0104
9 1.1787 0.0061 9 1.2307 0.0077

10 1.1599 0.0047 10 1.2094 0.0060
5 5 1.7604 0.2885 5 5 1.8599 0.3266

6 1.4494 0.0536 6 1.5271 0.0620
7 1.3371 0.0240 7 1.4057 0.0283
8 1.2754 0.0141 8 1.3383 0.0170
9 1.2354 0.0095 9 1.2943 0.0116

10 1.2070 0.0069 10 1.2627 0.0086
6 6 1.8227 0.3122 6 6 1.9264 0.3530

7 1.4943 0.0584 7 1.5757 0.0672
8 1.3741 0.0262 8 1.4461 0.0308
9 1.3074 0.0155 9 1.3736 0.0184

10 1.2638 0.0104 10 1.3258 0.0126
7 7 1.8774 0.3335 7 7 1.9849 0.3767

8 1.5343 0.0627 8 1.6189 0.0719
9 1.4075 0.0283 9 1.4824 0.0330

10 1.3365 0.0168 10 1.4055 0.0198
8 8 1.9264 0.3530 8 8 2.0371 0.3984

9 1.5706 0.0666 9 1.6578 0.0762
10 1.4379 0.0302 10 1.5154 0.0350

9 9 1.9709 0.3710 9 9 2.0846 0.4184
10 1.6037 0.0702 10 1.6935 0.0802

10 10 2.0117 10 10 2.1280 0.43710.3878
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Table 2: Expected values and variances of the rth order statistics from EPTI distribution
for n = 1, 2, . . . , 10 and λ = 2.5, 3

λ r n E(Xr:n) V ar(Xr:n) λ r n E(Xr:n) V ar(Xr:n)

2.5 1 1 1.4419 0.1731 3 1 1 1.4881 0.1894
2 1.2520 0.0333 2 1.2882 0.0376
3 1.1910 0.0157 3 1.2231 0.0181
4 1.1592 0.0097 4 1.1889 0.0115
5 1.1393 0.0069 5 1.1672 0.0083
6 1.1253 0.0053 6 1.1519 0.0064
7 1.1148 0.0043 7 1.1404 0.0053
8 1.1067 0.0036 8 1.1314 0.0044
9 1.1000 0.0031 9 1.1240 0.0038

10 1.0945 0.0027 10 1.1179 0.0034
2 2 1.6317 0.2408 2 2 1.6880 0.2614

3 1.3742 0.0461 3 1.4185 0.0510
4 1.2862 0.0214 4 1.3257 0.0240
5 1.2392 0.0131 5 1.2757 0.0149
6 1.2091 0.0091 6 1.2436 0.0105
7 1.1880 0.0069 7 1.2209 0.0080
8 1.1720 0.0055 8 1.2037 0.0064
9 1.1596 0.0045 9 1.1902 0.0054

10 1.1494 0.0038 10 1.1791 0.0046
3 3 1.7604 0.2885 3 3 1.8227 0.3122

4 1.4622 0.0553 4 1.5114 0.0606
5 1.3567 0.0256 5 1.4006 0.0284
6 1.2992 0.0155 6 1.3399 0.0174
7 1.2621 0.0108 7 1.3005 0.0122
8 1.2357 0.0081 8 1.2724 0.0093
9 1.2157 0.0064 9 1.2510 0.0074

10 1.2000 0.0052 10 1.2342 0.0061
4 4 1.8599 0.3266 4 4 1.9264 0.3530

5 1.5325 0.0627 5 1.5853 0.0685
6 1.4142 0.0290 6 1.4613 0.0320
7 1.3488 0.0176 7 1.3925 0.0196
8 1.3061 0.0122 8 1.3474 0.0136
9 1.2756 0.0091 9 1.3150 0.0103

10 1.2524 0.0072 10 1.2904 0.0082
5 5 1.9417 0.3591 5 5 2.0117 0.3878

6 1.5917 0.0691 6 1.6473 0.0752
7 1.4632 0.0319 7 1.5129 0.0350
8 1.3915 0.0193 8 1.4376 0.0214
9 1.3443 0.0134 9 1.3879 0.0149

10 1.3103 0.0100 10 1.3520 0.0112
6 6 2.0117 0.3878 6 6 2.0846 0.4184

7 1.6431 0.0747 7 1.7010 0.0812
8 1.5062 0.0345 8 1.5581 0.0378
9 1.4292 0.0209 9 1.4773 0.0230

10 1.3782 0.0145 10 1.4238 0.0160
7 7 2.0731 0.4135 7 7 2.1485 0.4460

8 1.6888 0.0797 8 1.7487 0.0865
9 1.5448 0.0369 9 1.5984 0.0403

10 1.4632 0.0223 10 1.5131 0.0245
8 8 2.1280 0.4371 8 8 2.2056 0.4713

9 1.7299 0.0843 9 1.7916 0.0915
10 1.5797 0.0390 10 1.6350 0.0426

9 9 2.1778 0.4589 9 9 2.2573 0.4947
10 1.7674 0.0886 10 1.8308 0.0960

10 10 2.2234 10 10 2.3047 0.51650.4792
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Table 3: Expected values and variances of the upper record values from EPTI distribution
for n = 1, 2, . . . , 10 and λ = 1.5, 2.0, 2.5 and 3.0

λ n E(X) V ar(X) λ n E(X) V ar(X)

1.5 1 1.3265 0.1321 2 1 1.3889 0.1543
2 1.1213 0.0162 2 1.1605 0.0211
3 1.0593 0.0045 3 1.0865 0.0066
4 1.0318 0.0016 4 1.0510 0.0026
5 1.0178 0.0006 5 1.0315 0.0012
6 1.0102 0.0002 6 1.0200 0.0005
7 1.0060 0.0001 7 1.0128 0.0003
8 1.0035 0.0000 8 1.0083 0.0001
9 1.0021 0.0000 9 1.0055 0.0001

10 1.0012 0.0000 10 1.0036 0.0000
2.5 1 1.4419 0.1731 3 1 1.4881 0.1894

2 1.1955 0.0253 2 1.2273 0.0290
3 1.1123 0.0086 3 1.1366 0.0104
4 1.0705 0.0037 4 1.0896 0.0047
5 1.0463 0.0018 5 1.0615 0.0024
6 1.0312 0.0009 6 1.0433 0.0013
7 1.0214 0.0005 7 1.0310 0.0007
8 1.0149 0.0003 8 1.0225 0.0004
9 1.0104 0.0001 9 1.0165 0.0002

10 1.0073 0.0001 10 1.0121 0.0002
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